A Self-organizing Neural System for Background and Foreground Modeling

  • Lucia Maddalena
  • Alfredo Petrosino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5163)

Abstract

In this paper we propose a system that is able to detect moving objects in digital image sequences taken from stationary cameras and to distinguish wether they have eventually stopped in the scene. Our approach is based on self organization through artificial neural networks to construct a model of the scene background that can handle scenes containing moving backgrounds or gradual illumination variations, and models of stopped foreground layers that help in distinguishing between moving and stopped foreground regions, leading to an initial segmentation of scene objects. Experimental results are presented for color video sequences that represent typical situations critical for video surveillance systems.

Keywords

background modeling foreground modeling neural network self organization visual surveillance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cantoni, V., Marinaro, M., Petrosino, A. (eds.): Visual Attention Mechanisms. Kluwer Academic/Plenum Publishers, New York (2002)Google Scholar
  2. 2.
    Collins, R.T., Lipton, A.J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P., Wixson, L.: A System for Video Surveillance and Monitoring, The Robotics Institute, Carnegie Mellon University, CMU-RI-TR-00-12 (2000)Google Scholar
  3. 3.
    Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance. Proceedings of the IEEE 90(7), 1151–1163 (2002)CrossRefGoogle Scholar
  4. 4.
    Kohonen, T.: Self-Organization and Associative Memory, 2nd edn. Springer, Berlin (1988)MATHGoogle Scholar
  5. 5.
    Maddalena, L., Petrosino, A.: A Self-Organizing Approach to Detection of Moving Patterns for Real-Time Applications. In: Mele, F., Ramella, G., Santillo, S., Ventriglia, F. (eds.) BVAI 2007. LNCS, vol. 4729, pp. 181–190. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Maddalena, L., Petrosino, A.: A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications. IEEE Trans. Image Process (July 2008) (to be published)Google Scholar
  7. 7.
    McKenna, S.J., Jabri, S., Duric, Z., Rosenfeld, A.: Tracking groups of people. Comput. Vision Image Understanding 80, 42–56 (2000)MATHCrossRefGoogle Scholar
  8. 8.
    Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: a systematic survey. IEEE Trans. Image Process. 14(3), 294–307 (2005)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Raja, Y., Mckenna, S.J., Gong, S.: Tracking color objects using adaptive mixture models. Image Vision Comput. 17, 225–231 (1999)CrossRefGoogle Scholar
  10. 10.
    Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and Practice of Background Maintenance. In: Proc. of the Seventh IEEE Conference on Computer Vision, vol. 1, pp. 255–261 (1999)Google Scholar
  11. 11.
    Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-Time Tracking of the Human Body. IEEE Trans. on PAMI 19(7), 780–785 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Lucia Maddalena
    • 1
  • Alfredo Petrosino
    • 2
  1. 1.ICAR - National Research Council NaplesItaly
  2. 2.Centro DirezionaleDSA - University of Naples ParthenopeNaplesItaly

Personalised recommendations