A Characterisation of Lambda Definability with Sums Via ⊤ ⊤-Closure Operators

  • Shin-ya Katsumata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5213)


We give a new characterisation of morphisms that are definable by the interpretation of the simply typed lambda calculus with sums in any bi-Cartesian closed category. The ⊤ ⊤-closure operator will be used to construct the category in which the collection of definable morphisms at sum types can be characterised as the coproducts of such collections at lower types.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alimohamed, M.: A characterization of lambda definability in categorical models of implicit polymorphism. Theor. Comput. Sci. 146(1&2), 5–23 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Altenkirch, T., Dybjer, P., Hofmann, M., Scott, P.: Normalization by evaluation for typed lambda calculus with coproducts. In: LICS, pp. 303–310 (2001)Google Scholar
  3. 3.
    Balat, V., Di Cosmo, R., Fiore, M.: Extensional normalisation and type-directed partial evaluation for typed lambda calculus with sums. In: Jones, N., Leroy, X. (eds.) POPL, pp. 64–76. ACM, New York (2004)CrossRefGoogle Scholar
  4. 4.
    Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Benton, N.: A typed, compositional logic for a stack-based abstract machine. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 364–380. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Borceux, F.: Handbook of Categorical Algebra 1. Encyclopedia of Mathematics and Its Applications, vol. 50. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  7. 7.
    Cockett, J.: Introduction to distributive categories. Mathematical Structures in Computer Science 3(3), 277–307 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Day, B.: A reflection theorem for closed categories. Journal of pure and applied algebra 2(1), 1–11 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dougherty, D., Subrahmanyam, R.: Equality between functionals in the presence of coproducts. In: LICS, pp. 282–291. IEEE Computer Society, Los Alamitos (1995)Google Scholar
  10. 10.
    Fiore, M., Di Cosmo, R., Balat, V.: Remarks on isomorphisms in typed lambda calculi with empty and sum types. In: LICS, pp. 147–157. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  11. 11.
    Fiore, M., Simpson, A.: Lambda definability with sums via grothendieck logical relations. In: Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 147–161. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Ghani, N.: βη-equality for coproducts. In: Dezani-Ciancaglini, M., Plotkin, G.D. (eds.) TLCA 1995. LNCS, vol. 902, pp. 171–185. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  13. 13.
    Girard, J.-Y.: Linear logic. Theor. Comp. Sci. 50, 1–102 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jacobs, B.: Categorical Logic and Type Theory. Elsevier, Amsterdam (1999)zbMATHGoogle Scholar
  15. 15.
    Jung, A., Tiuryn, J.: A new characterization of lambda definability. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 245–257. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  16. 16.
    Katsumata, S.: A semantic formulation of ⊤ ⊤-lifting and logical predicates for computational metalanguage. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 87–102. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Lafont, Y.: Logiques, Categóries et Machines. PhD thesis, Universit‘’e Paris VII (1988)Google Scholar
  18. 18.
    Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. In: Cambridge studies in advanced mathematics. CUP (1986)Google Scholar
  19. 19.
    Lindley, S.: Normalisation by Evaluation in the Compilation of Typed Functional Programming Languages. PhD thesis, University of Edinburgh (2004)Google Scholar
  20. 20.
    Lindley, S., Stark, I.: Reducibility and ⊤ ⊤-lifting for computation types. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 262–277. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Melliès, P.-A., Vouillon, J.: Recursive polymorphic types and parametricity in an operational framework. In: Proc. LICS 2005, pp. 82–91. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  22. 22.
    Mitchell, J.: Representation independence and data abstraction. In: Proc. POPL 1986, pp. 263–276 (1986)Google Scholar
  23. 23.
    Parigot, M.: Proofs of strong normalisation for second order classical natural deduction. Journal of Symbolic Logic 62(4), 1461–1479 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Pitts, A.: Parametric polymorphism and operational equivalence. Mathematical Structures in Computer Science 10(3), 321–359 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Pitts, A., Stark, I.: Operational reasoning for functions with local state. In: Gordon, A.D., Pitts, A.M. (eds.) Higher Order Operational Techniques in Semantics. Publications of the Newton Institute, pp. 227–273. Cambridge University Press, Cambridge (1998)Google Scholar
  26. 26.
    Walters, R.F.C.: Categories and Computer Science. Cambridge Computer Science Texts. Cambridge University Press, Cambridge (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Shin-ya Katsumata
    • 1
  1. 1.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations