Quantitative Game Semantics for Linear Logic

  • Ugo Dal Lago
  • Olivier Laurent
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5213)

Abstract

We present a game-based semantic framework in which the time complexity of any IMELL proof can be read out of its interpretation. This gives a compositional view of the geometry of interaction framework introduced by the first author. In our model the time measure is given by means of slots, as introduced by Ghica in a recent paper. The cost associated to a strategy is polynomially related to the normalization time of the interpreted proof, in the style of a complexity-theoretical full abstraction result.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S.: Semantics of interaction. In: Dybjer, P., Pitts, A. (eds.) Semantics and Logics of Computation. Publications of the Newton Institute, pp. 1–32. Cambridge University Press, Cambridge (1997)Google Scholar
  2. 2.
    Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information and Computation 163(2), 409–470 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baillot, P.: Approches dynamiques en sémantique de la logique linéaire : jeux et géométrie de l’interaction. Thèse de doctorat, Université Aix-Marseille II (1999)Google Scholar
  4. 4.
    Baillot, P., Pedicini, M.: Elementary complexity and geometry of interaction. Fundamenta Informaticae 45(1-2), 1–31 (2001)MATHMathSciNetGoogle Scholar
  5. 5.
    Lago, U.D.: Context semantics, linear logic and computational complexity. In: Proc. 21st Symposium on Logic in Computer Science, pp. 169–178. IEEE, Los Alamitos (2006)Google Scholar
  6. 6.
    Danos, V., Herbelin, H., Regnier, L.: Games semantics and abstract machines. In: Proc. 11th Symposium on Logic In Computer Science, pp. 394–405. IEEE, Los Alamitos (1996)CrossRefGoogle Scholar
  7. 7.
    de Carvalho, D., Pagani, M., de Falco, L.T.: A semantic measure of the execution time in linear logic. Technical Report 6441, INRIA (2007)Google Scholar
  8. 8.
    Ghica, D.: Slot games: A quantitative model of computation. In: Proc. 32nd ACM Symposium on Principles of Programming Languages, pp. 85–97 (2005)Google Scholar
  9. 9.
    Girard, J.-Y.: Geometry of interaction III: accommodating the additives. In: Girard, J.-Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic. London Mathematical Society Lecture Note Series, vol. 222, pp. 329–389. Cambridge University Press, Cambridge (1995)Google Scholar
  10. 10.
    Hyland, M.: Game semantics. In: Dybjer, P., Pitts, A. (eds.) Semantics and Logics of Computation. Publications of the Newton Institute, pp. 131–184. Cambridge University Press, Cambridge (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ugo Dal Lago
    • 1
  • Olivier Laurent
    • 2
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità di Bologna 
  2. 2.Preuves Programmes SystèmesCNRS Université Paris 7 

Personalised recommendations