Advertisement

Fractional Collections with Cardinality Bounds, and Mixed Linear Arithmetic with Stars

  • Ruzica Piskac
  • Viktor Kuncak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5213)

Abstract

We present decision procedures for logical constraints involving collections such as sets, multisets, and fuzzy sets. Element membership in our collections is given by characteristic functions from a finite universe (of unknown size) to a user-defined subset of rational numbers. Our logic supports standard operators such as union, intersection, difference, or any operation defined pointwise using mixed linear integer-rational arithmetic. Moreover, it supports the notion of cardinality of the collection, defined as the sum of occurrences of all elements. Deciding formulas in such logic has applications in software verification.

Our decision procedure reduces satisfiability of formulas with collections to satisfiability of formulas in an extension of mixed linear integer-rational arithmetic with a “star” operator. The star operator computes the integer cone (closure under vector addition) of the solution set of a given formula. We give an algorithm for eliminating the star operator, which reduces the problem to mixed linear integer-rational arithmetic. Star elimination combines naturally with quantifier elimination for mixed integer-rational arithmetic. Our decidability result subsumes previous special cases for sets and multisets. The extension with star is interesting in its own right because it can encode reachability problems for a simple class of transition systems.

Keywords

verification and program analysis sets multisets fuzzy sets cardinality operator mixed linear integer-rational arithmetic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berezin, S., Ganesh, V., Dill, D.L.: An online proof-producing decision procedure for mixed-integer linear arithmetic. In: TACAS (2003)Google Scholar
  2. 2.
    Bradley, A.R., Manna, Z.: The Calculus of Computation. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  3. 3.
    Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Dutertre, B., de Moura, L.: Integrating Simplex with DPLL(T). Technical Report SRI-CSL-06-01, SRI International (2006)Google Scholar
  5. 5.
    Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Operations Research Letters 34(5), 564–568 (2006), http://dx.doi.org/10.1016/j.orl.2005.09.008 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Feferman, S., Vaught, R.L.: The first order properties of products of algebraic systems. Fundamenta Mathematicae 47, 57–103 (1959)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Ginsburg, S., Spanier, E.: Semigroups, Pressburger formulas and languages. Pacific Journal of Mathematics 16(2), 285–296 (1966)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean Algebra with Presburger Arithmetic. J. of Automated Reasoning (2006), http://dx.doi.org/10.1007/s10817-006-9042-1
  9. 9.
    Kuncak, V., Rinard, M.: Towards efficient satisfiability checking for Boolean Algebra with Presburger Arithmetic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 215–230. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Lugiez, D.: Multitree automata that count. Theor. Comput. Sci. 333(1-2), 225–263 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lugiez, D., Zilio, S.D.: Multitrees Automata, Presburger’s Constraints and Tree Logics. Research report 08-2002, LIF, Marseille, France (June 2002), http://www.lif-sud.univ-mrs.fr/Rapports/08-2002.html
  12. 12.
    Piskac, R., Kuncak, V.: Decision procedures for multisets with cardinality constraints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 218–232. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Piskac, R., Kuncak, V.: Linear arithmetic with stars. In: CAV (2008)Google Scholar
  14. 14.
    Piskac, R., Kuncak, V.: On linear arithmetic with stars. Technical Report LARA-REPORT-2008-005, EPFL (2008)Google Scholar
  15. 15.
    Pottier, L.: Minimal solutions of linear diophantine systems: Bounds and algorithms. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488. Springer, Heidelberg (1991)Google Scholar
  16. 16.
    Pugh, W.: The Omega test: a fast and practical integer programming algorithm for dependence analysis. In: ACM/IEEE conf. Supercomputing (1991)Google Scholar
  17. 17.
    Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, Chichester (1998)zbMATHGoogle Scholar
  18. 18.
    Weispfenning, V.: Mixed real-integer linear quantifier elimination. In: ISSAC, pp. 129–136 (1999)Google Scholar
  19. 19.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Zarba, C.G.: Combining multisets with integers. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392. Springer, Heidelberg (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ruzica Piskac
    • 1
  • Viktor Kuncak
    • 1
  1. 1.LARA - I&C - EPFLLausanneSwitzerland

Personalised recommendations