Advertisement

The Computability Path Ordering: The End of a Quest

  • Frédéric Blanqui
  • Jean-Pierre Jouannaud
  • Albert Rubio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5213)

Abstract

In this paper, we first briefly survey automated termination proof methods for higher-order calculi. We then concentrate on the higher-order recursive path ordering, for which we provide an improved definition, the Computability Path Ordering. This new definition appears indeed to capture the essence of computability arguments à la Tait and Girard, therefore explaining the name of the improved ordering.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel, A.: Termination checking with types. Theoretical Informatics and Applications 38(4), 277–319 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barbanera, F.: Adding algebraic rewriting to the Calculus of Constructions: strong normalization preserved. In: Okada, M., Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516. Springer, Heidelberg (1991)Google Scholar
  4. 4.
    Barbanera, F., Fernández, M.: Combining first and higher order rewrite systems with type assignment systems. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664. Springer, Heidelberg (1993)Google Scholar
  5. 5.
    Barbanera, F., Fernández, M.: Modularity of termination and confluence in combinations of rewrite systems with λ ω. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700. Springer, Heidelberg (1993)Google Scholar
  6. 6.
    Barbanera, F., Fernández, M., Geuvers, H.: Modularity of strong normalization and confluence in the algebraic-λ-cube. In: Proceedings of the 9th IEEE Symposium on Logic in Computer Science (1994)Google Scholar
  7. 7.
    Barthe, G., Frade, M.J., Giménez, E., Pinto, L., Uustalu, T.: Type-based termination of recursive definitions. Mathematical Structures in Computer Science 14(1), 97–141 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ben-Amram, A.M., Jones, N.D., Lee, C.S.: The size-change principle for program termination. In: Proceedings of the 28th ACM Symposium on Principles of Programming Languages (2001)Google Scholar
  9. 9.
    Blanqui, F.: Definitions by rewriting in the Calculus of Constructions (extended abstract). In: Proceedings of the 16th IEEE Symposium on Logic in Computer Science (2001)Google Scholar
  10. 10.
    Blanqui, F.: Higher-order dependency pairs. In: Proceedings of the 8th International Workshop on Termination (2006)Google Scholar
  11. 11.
    Blanqui, F.: Termination and confluence of higher-order rewrite systems. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Blanqui, F.: A type-based termination criterion for dependently-typed higher-order rewrite systems. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 24–39. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Blanqui, F.: Definitions by rewriting in the Calculus of Constructions. Mathematical Structures in Computer Science 15(1), 37–92 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Blanqui, F.: Inductive types in the Calculus of Algebraic Constructions. Fundamenta Informaticae 65(1-2), 61–86 (2005)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Blanqui, F.: Computability closure: Ten years later. In: Comon-Lundh, H., Kirchner, C., Kirchner, H. (eds.) Jouannaud Festschrift. LNCS, vol. 4600, pp. 68–88. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Blanqui, F., Jouannaud, J.-P., Okada, M.: Inductive-data-type Systems. Theoretical Computer Science 272, 41–68 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Blanqui, F., Jouannaud, J.-P., Rubio, A.: Higher-order termination: from Kruskal to computability. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 1–14. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Blanqui, F., Jouannaud, J.-P., Rubio, A.: HORPO with computability closure: A reconstruction. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 138–150. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Bohr, N., Jones, N.: Termination Analysis of the untyped lambda-calculus. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 1–23. Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Borralleras, C.: Ordering-based methods for proving termination automatically. PhD thesis, Universitat Politècnica de Catalunya, Spain (2003)Google Scholar
  21. 21.
    Borralleras, C., Rubio, A.: A monotonic higher-order semantic path ordering. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Borralleras, C., Rubio, A.: Orderings and constraints: Theory and practice of proving termination. In: Comon-Lundh, H., Kirchner, C., Kirchner, H. (eds.) Jouannaud Festschrift. LNCS, vol. 4600, pp. 28–43. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Breazu-Tannen, V.: Combining algebra and higher-order types. In: Proceedings of the 3rd IEEE Symposium on Logic in Computer Science (1988)Google Scholar
  24. 24.
    Breazu-Tannen, V., Gallier, J.: Polymorphic rewriting conserves algebraic strong normalization. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  25. 25.
    Chin, W.N., Khoo, S.C.: Calculating sized types. Journal of Higher-Order and Symbolic Computation 14(2-3), 261–300 (2001)zbMATHCrossRefGoogle Scholar
  26. 26.
    Dershowitz, N.: Orderings for term rewriting systems. Theoretical Computer Science 17, 279–301 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Dershowitz, N.: Personal Communication (2008)Google Scholar
  28. 28.
    Dougherty, D.: Adding algebraic rewriting to the untyped lambda calculus. Information and Computation 101(2), 251–267 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Giesl, J., Swiderski, S., Schneider-Kamp, P., Thiemann, R.: Automated termination analysis for haskell: From term rewriting to programming languages. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 297–312. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: Combining techniques for automated termination proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005)Google Scholar
  31. 31.
    Goubault-Larrecq, J.: Well-founded recursive relations. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  32. 32.
    Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using sized types. In: Proceedings of the 23th ACM Symposium on Principles of Programming Languages (1996)Google Scholar
  33. 33.
    Jay, C.B.: The pattern calculus. ACM Transactions on Programming Languages and Systems 26(6), 911–937 (2004)CrossRefGoogle Scholar
  34. 34.
    Jouannaud, J.-P., Okada, M.: A computation model for executable higher-order algebraic specification languages. In: Proceedings of the 6th IEEE Symposium on Logic in Computer Science (1991)Google Scholar
  35. 35.
    Jouannaud, J.-P., Okada, M.: Abstract Data Type Systems. Theoretical Computer Science 173(2), 349–391 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Jouannaud, J.-P., Rubio, A.: Higher-order orderings for normal rewriting. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 387–399. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  37. 37.
    Jouannaud, J.-P., Rubio, A.: The Higher-Order Recursive Path Ordering. In: Proceedings of the 14th IEEE Symposium on Logic in Computer Science (1999)Google Scholar
  38. 38.
    Jouannaud, J.-P., Rubio, A.: Rewrite orderings for higher-order terms in eta-long beta-normal form and the recursive path ordering. Theoretical Computer Science 208, 33–58 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Jouannaud, J.-P., Rubio, A.: Higher-order recursive path orderings “à la carte”, Draft (2001)Google Scholar
  40. 40.
    Jouannaud, J.-P., Rubio, A.: Polymorphic higher-order recursive path orderings. Journal of the ACM 54(1), 1–48 (2007)CrossRefMathSciNetGoogle Scholar
  41. 41.
    Kamin, S., Lévy, J.-J.: Two generalizations of the Recursive Path Ordering (unpublished, 1980)Google Scholar
  42. 42.
    Krishnamoorthy, M.S., Narendran, P.: On recursive path ordering. Theoretical Computer Science 40(2-3), 323–328 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Loria-Saenz, C., Steinbach, J.: Termination of combined (rewrite and λ-calculus) systems. In: Rusinowitch, M., Remy, J.-L. (eds.) CTRS 1992. LNCS, vol. 656. Springer, Heidelberg (1993)Google Scholar
  44. 44.
    Okada, M.: Strong normalizability for the combined system of the typed lambda calculus and an arbitrary convergent term rewrite system. In: Proceedings of the 1989 International Symposium on Symbolic and Algebraic Computation. ACM Press, New York (1989)Google Scholar
  45. 45.
    Sakai, M., Kusakari, K.: On dependency pair method for proving termination of higher-order rewrite systems. IEICE Transactions on Information and Systems E88-D(3), 583–593 (2005)CrossRefGoogle Scholar
  46. 46.
    Sakai, M., Watanabe, Y., Sakabe, T.: An extension of dependency pair method for proving termination of higher-order rewrite systems. IEICE Transactions on Information and Systems E84-D(8), 1025–1032 (2001)Google Scholar
  47. 47.
    van de Pol, J.: Termination proofs for higher-order rewrite systems. In: Heering, J., Meinke, K., Möller, B., Nipkow, T. (eds.) HOA 1993. LNCS, vol. 816. Springer, Heidelberg (1994)Google Scholar
  48. 48.
    van de Pol, J.: Termination of higher-order rewrite systems. PhD thesis, Utrecht Universiteit, Nederlands (1996)Google Scholar
  49. 49.
    van de Pol, J., Schwichtenberg, H.: Strict functionals for termination proofs. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  50. 50.
    van Raamsdong, F., Kop, C.: Personal Communication (2008)Google Scholar
  51. 51.
    Walukiewicz-Chrzaszcz, D.: Termination of rewriting in the Calculus of Constructions. Journal of Functional Programming 13(2), 339–414 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Xi, H.: Dependent types for program termination verification. Journal of Higher-Order and Symbolic Computation 15(1), 91–131 (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Frédéric Blanqui
    • 1
  • Jean-Pierre Jouannaud
    • 2
  • Albert Rubio
    • 3
  1. 1.INRIA, Campus ScientifiqueVandœuvre-lès-Nancy CedexFrance
  2. 2.LIX, Projet INRIA TypiCal, École Polytechnique and CNRSPalaiseauFrance
  3. 3.Technical University of CataloniaBarcelonaSpain

Personalised recommendations