KANTS: Artifical Ant System for Classification

  • Carlos Fernandes
  • Antonio Miguel Mora
  • Juan Julián Merelo
  • Vitorino Ramos
  • Juan Luís Laredo
  • Agostihno Rosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5217)

Abstract

This paper investigates a new model that takes advantage of the cooperative self-organization of Ant Algorithms to evolve a naturally inspired pattern recognition (and also clustering) method. The approach considers each data item as an ant that changes the environment as it moves through it. The algorithm is successfully applied to well-known classification problems and yields better results than some other classification approaches, like K-Nearest Neighbours and Neural Networks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Labroche, N., Monmarche, N., Venturini, G.: AntClust: Ant Clustering and Web Usage Mining. In: GECCO 2003. LNCS, vol. 2723, pp. 25–36. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Deneubourg, J., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien, L.: The dynamics of collective sorting robot-like ants and ant-like robots. In: Proceedings of the first international conference on simulation of adaptive behavior on From animals to animats table of contents, pp. 356–363 (1991)Google Scholar
  3. 3.
    Bonabeau, E., Theraulaz, G., Fourcassié, V., Deneubourg, J.: Phase-ordering kinetics of cemetery organization in ants. Physical Review E 57(4), 4568–4571 (1998)CrossRefGoogle Scholar
  4. 4.
    Ramos, V., Merelo, J.J.: Self-organized stigmergic document maps: Environment as a mechanism for context learning. In: Alba, E., Fernández, F., Gómez, J.A., Herrera, F., Hidalgo, J.I., Merelo-Guervós, J.J., Sánchez, J.M. (eds.) Actas primer congreso español algoritmos evolutivos, AEB 2002, pp. 284–293. Universidad de Extremadura (2002), http://citeseer.nj.nec.com/ramos02selforganized.html
  5. 5.
    Kohonen, T.: The Self-Organizing Maps. Springer, Heidelberg (2001)Google Scholar
  6. 6.
    Chialvo, D., Millonas, M.: How swarms build cognitive maps. In: The Biology and Technology of Intelligent Autonomous Agents. NATO ASI Series, vol. 144, pp. 439–450 (1995)Google Scholar
  7. 7.
    Wilson, E.: The Insect Societies. Belknam Press, Cambridge (1971)Google Scholar
  8. 8.
    Fix, E., Hodges, J.L.: Discriminatory analysis: Nonparametric discrimination: Consistency properties. In: International Statistical Review, vol. 57, pp. 238–247 (1989)Google Scholar
  9. 9.
    Friedman, J.H.: Regularized discriminant analysis. Journal of the American Statistical Association 84, 165–175 (1989)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Moller, F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6, 525–533 (1990)CrossRefGoogle Scholar
  11. 11.
    Widrow, B., Lehr, M.: 30 years of adaptive neural networks: Peceptron, madaline, and backpropagation. In: Proceedings of the IEEE, vol. 78, pp. 1415–1442 (1990)Google Scholar
  12. 12.
    Fernandes, C., Ramos, V., Rosa, A.C.: Varying the population size of artificial foraging swarms on time varying landscapes. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 311–316. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Carlos Fernandes
    • 1
    • 2
  • Antonio Miguel Mora
    • 2
  • Juan Julián Merelo
    • 2
  • Vitorino Ramos
    • 1
  • Juan Luís Laredo
    • 2
  • Agostihno Rosa
    • 1
  1. 1.LASEEB-ISR/ISTUniversity of LisbonPortugal
  2. 2.Dep. de Arquitectura y Tecnología de ComputadoresUniversity of GranadaSpain

Personalised recommendations