Advertisement

Ant Colony Optimization and the Single Round Robin Maximum Value Problem

  • David C. Uthus
  • Patricia J. Riddle
  • Hans W. Guesgen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5217)

Abstract

In this paper, we apply the ant colony optimization metaheuristic to the Single Round Robin Maximum Value Problem, a problem from sports scheduling. This problem contains both feasibility constraints and an optimization goal. We approach this problem using a combination of the metaheuristic with backtracking search. We show how using constraint satisfaction techniques can improve the hybrid’s performance. We also show that our approach performs comparably to integer programming and better than tabu search when applied to the Single Round Robin Maximum Value Problem.

Keywords

Tabu Search Constraint Satisfaction Problem Quadratic Assignment Problem Feasibility Constraint Round Robin Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crauwels, H., Van Oudheusden, D.: Ant Colony Optimization and Local Improvement. In: Workshop of Real-Life Applications of Metaheuristics, Antwerp (2003)Google Scholar
  2. 2.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  3. 3.
    Easton, K., Nemhauser, G., Trick, M.: Solving the Travelling Tournament Problem: A Combined Integer Programming and Constraint Programming Approach. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 100–109. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Di Gaspero, L., Schaerf, A.: A Composite-Neighborhood Tabu Search Approach to the Traveling Tournament Problem. J. Heuristics 13, 189–207 (2007)CrossRefGoogle Scholar
  5. 5.
    Meyer, B.: Constraint Handling and Stochastic Ranking in ACO. The 2005 IEEE Congress on Evolutionary Computation 3, 2683–2690 (2005)CrossRefGoogle Scholar
  6. 6.
    Meyer, B., Ernst, A.: Integrating ACO and Constraint Propagation. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 166–177. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Rasmussen, R.V., Trick, M.A.: Round Robin Scheduling - A Survey. European Journal of Operations Research 188, 617–636 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, New Jersey (2003)Google Scholar
  9. 9.
    Socha, K., Sampels, M., Manfrin, M.: Ant Algorithms for the University Course Timetabling Problem with Regard to the State-of-the-Art. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 334–345. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Stützle, T.: MAX-MIN Ant System for Quadratic Assignment Problems. Technical report AIDA-97-4, FG Intellektik, FB Informatik, TU Darmstadt, Germany (1997)Google Scholar
  11. 11.
    Stützle, T., Dorigo, M.: ACO Algorithms for the Quadratic Assignment Problem. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 33–50. McGraw-Hill, London (1999)Google Scholar
  12. 12.
    Trick, M.A.: Integer and Constraint Programming Approaches for Round Robin Tournament Scheduling. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 63–77. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • David C. Uthus
    • 1
  • Patricia J. Riddle
    • 1
  • Hans W. Guesgen
    • 2
  1. 1.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand
  2. 2.School of Engineering and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations