Pleiades: Subspace Clustering and Evaluation

  • Ira Assent
  • Emmanuel Müller
  • Ralph Krieger
  • Timm Jansen
  • Thomas Seidl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5212)

Abstract

Subspace clustering mines the clusters present in locally relevant subsets of the attributes. In the literature, several approaches have been suggested along with different measures for quality assessment.

Pleiades provides the means for easy comparison and evaluation of different subspace clustering approaches, along with several quality measures specific for subspace clustering as well as extensibility to further application areas and algorithms. It extends the popular WEKA mining tools, allowing for contrasting results with existing algorithms and data sets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is nearest neighbors meaningful. In: Proceedings International Conference on Database Theory (ICDT), pp. 217–235 (1999)Google Scholar
  2. 2.
    Parsons, L., Haque, E., Liu, H.: Subspace clustering for high dimensional data: a review. ACM SIGKDD Explorations Newsletter 6(1), 90–105 (2004)CrossRefGoogle Scholar
  3. 3.
    Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Publishers Inc., San Francisco (2005)MATHGoogle Scholar
  4. 4.
    Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings ACM SIGMOD International Conference on Management of Data, pp. 94–105 (1998)Google Scholar
  5. 5.
    Sequeira, K., Zaki, M.: SCHISM: A new approach for interesting subspace mining. In: Proceedings of the IEEE International Conference on Data Mining (ICDM), pp. 186–193 (2004)Google Scholar
  6. 6.
    Kailing, K., Kriegel, H.P., Kröger, P.: Density-connected subspace clustering for high-dimensional data. In: Proceedings of the IEEE International Conference on Data Mining (ICDM), pp. 246–257 (2004)Google Scholar
  7. 7.
    Böhm, C., Kailing, K., Kriegel, H.P., Kröger, P.: Density connected clustering with local subspace preferences. In: Proceedings of the IEEE International Conference on Data Mining (ICDM), pp. 27–34 (2004)Google Scholar
  8. 8.
    Assent, I., Krieger, R., Müller, E., Seidl, T.: DUSC: Dimensionality unbiased subspace clustering. In: Proceedings of the IEEE International Conference on Data Mining (ICDM), pp. 409–414 (2007)Google Scholar
  9. 9.
    Aggarwal, C., Wolf, J., Yu, P., Procopiuc, C., Park, J.: Fast algorithms for projected clustering. In: Proceedings ACM SIGMOD International Conference on Management of Data, pp. 61–72 (1999)Google Scholar
  10. 10.
    Moise, G., Sander, J., Ester, M.: P3C: A robust projected clustering algorithm. In: Proceedings of the IEEE International Conference on Data Mining (ICDM), pp. 414–425. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  11. 11.
    Bringmann, B., Zimmermann, A.: The chosen few: On identifying valuable patterns. In: Proceedings of the IEEE International Conference on Data Mining (ICDM), pp. 63–72 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ira Assent
    • 1
  • Emmanuel Müller
    • 1
  • Ralph Krieger
    • 1
  • Timm Jansen
    • 1
  • Thomas Seidl
    • 1
  1. 1.Data management and exploration groupRWTH Aachen UniversityGermany

Personalised recommendations