Efficient Pairwise Multilabel Classification for Large-Scale Problems in the Legal Domain

  • Eneldo Loza Mencía
  • Johannes Fürnkranz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5212)

Abstract

In this paper we applied multilabel classification algorithms to the EUR-Lex database of legal documents of the European Union. On this document collection, we studied three different multilabel classification problems, the largest being the categorization into the EUROVOC concept hierarchy with almost 4000 classes. We evaluated three algorithms: (i) the binary relevance approach which independently trains one classifier per label; (ii) the multiclass multilabel perceptron algorithm, which respects dependencies between the base classifiers; and (iii) the multilabel pairwise perceptron algorithm, which trains one classifier for each pair of labels. All algorithms use the simple but very efficient perceptron algorithm as the underlying classifier, which makes them very suitable for large-scale multilabel classification problems. The main challenge we had to face was that the almost 8,000,000 perceptrons that had to be trained in the pairwise setting could no longer be stored in memory. We solve this problem by resorting to the dual representation of the perceptron, which makes the pairwise approach feasible for problems of this size. The results on the EUR-Lex database confirm the good predictive performance of the pairwise approach and demonstrates the feasibility of this approach for large-scale tasks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)Google Scholar
  2. 2.
    Brinker, K., Fürnkranz, J., Hüllermeier, E.: A Unified Model for Multilabel Classification and Ranking. In: Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006) (2006)Google Scholar
  3. 3.
    Crammer, K., Singer, Y.: A Family of Additive Online Algorithms for Category Ranking. Journal of Machine Learning Research 3(6), 1025–1058 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. Journal of Machine Learning Research 7, 551–585 (2006)MathSciNetGoogle Scholar
  5. 5.
    Freund, Y., Schapire, R.E.: Large Margin Classification using the Perceptron Algorithm. Machine Learning 37(3), 277–296 (1999)MATHCrossRefGoogle Scholar
  6. 6.
    Fürnkranz, J.: Round Robin Classification. Journal of Machine Learning Research 2, 721–747 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., Brinker, K.: Multilabel classification via calibrated label ranking. Machine Learning (to appear, 2008)Google Scholar
  8. 8.
    Hsu, C.-W., Lin, C.-J.: A Comparison of Methods for Multi-class Support Vector Machines. IEEE Transactions on Neural Networks 13(2), 415–425 (2002)CrossRefGoogle Scholar
  9. 9.
    Khardon, R., Wachman, G.: Noise tolerant variants of the perceptron algorithm. Journal of Machine Learning Research 8, 227–248 (2007)Google Scholar
  10. 10.
    Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A New Benchmark Collection for Text Categorization Research. Journal of Machine Learning Research 5, 361–397 (2004)Google Scholar
  11. 11.
    Loza Mencía, E., Fürnkranz, J.: An evaluation of efficient multilabel classification algorithms for large-scale problems in the legal domain. In: LWA 2007: Lernen -Wissen - Adaption, Workshop Proceedings, pp. 126–132 (2007)Google Scholar
  12. 12.
    Loza Mencía, E., Fürnkranz, J.: Pairwise learning of multilabel classifications with perceptrons. In: Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IJCNN 2008), Hong Kong (2008)Google Scholar
  13. 13.
    Loza Mencía, E., Fürnkranz, J.: Efficient multilabel classification algorithms for large-scale problems in the legal domain. In: Proceedings of the Language Resources and Evaluation Conference (LREC) Workshop on Semantic Processing of Legal Texts, Marrakech, Morocco (2008)Google Scholar
  14. 14.
    Park, S.-H., Fürnkranz, J.: Efficient pairwise classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 658–665. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Price, D., Knerr, S., Personnaz, L., Dreyfus, G.: Pairwise Neural Network Classifiers with Probabilistic Outputs. In: Advances in Neural Information Processing Systems, vol. 7, pp. 1109–1116. MIT Press, Cambridge (1995)Google Scholar
  16. 16.
    Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review 65(6), 386–408 (1958)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)CrossRefGoogle Scholar
  18. 18.
    Shalev-Shwartz, S., Singer, Y.: A New Perspective on an Old Perceptron Algorithm. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 264–278. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Eneldo Loza Mencía
    • 1
  • Johannes Fürnkranz
    • 1
  1. 1.Knowledge Engineering GroupTechnische Universität Darmstadt 

Personalised recommendations