Advertisement

Hierarchical Distance-Based Conceptual Clustering

  • Ana Maria Funes
  • Cesar Ferri
  • Jose Hernández-Orallo
  • Maria Jose Ramírez-Quintana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5211)

Abstract

In this work we analyse the relation between hierarchical distance-based clustering and the concepts that can be obtained from the hierarchy by generalisation. Many inconsistencies may arise, because the distance and the conceptual generalisation operator are usually incompatible. To overcome this, we propose an algorithm which integrates distance-based and conceptual clustering. The new dendrograms can show when an element has been integrated to the cluster because it is near in the metric space or because it is covered by the concept. In this way, the new clustering can differ from the original one but the metric traceability is clear. We introduce three different levels of agreement between the clustering hierarchy obtained from the linkage distance and the new hierarchy, and we define properties these generalisation operators should satisfy in order to produce distance-consistent dendrograms.

Keywords

conceptual clustering hierarchical clustering generalisation distances 

References

  1. 1.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Survey 31(3), 264–323 (1999)CrossRefGoogle Scholar
  2. 2.
    Berkhin, P.: A Survey of Clustering Data Mining Techniques, Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Michalski, R.S.: Knowledge Acquisition Through Conceptual Clustering: A Theoretical Framework and an Algorithm for Partitioning Data into Conjunctive Concepts. Policy Analysis and Information Systems 4(3), 219–244 (1980)MathSciNetGoogle Scholar
  4. 4.
    Michalski, R.S., Stepp, R.E.: Learning from Observation: Conceptual Clustering. In: Michalski, et al. (eds.) Machine Learning: An Artificial Intelligence Approach, pp. 331–363. TIOGA Publishing Co. (1983)Google Scholar
  5. 5.
    Ramon, J., Bruynooghe, M., Van Laer, W.: Distance measures between atoms. CompulogNet Meeting ComputingLogic & Machine Learning, 35–41 (1998)Google Scholar
  6. 6.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10, 707–710 (1966)MathSciNetGoogle Scholar
  7. 7.
    Fisher, D.: Knowledge Acquisition Via Incremental Conceptual Clustering. Machine Learning 2, 139–172 (1987)Google Scholar
  8. 8.
    Talavera, L., Béjar, J.: Generality-Based Conceptual Clustering with Probabilistic Concepts. IEEE Transactions on Pattern Analysis & Machine Inteligence 23(2) (2001)Google Scholar
  9. 9.
    Bisson, G.: Conceptual Clustering in a First Order Logic Representation. In: European Conference on Artificial Intelligence, pp. 458–462 (1992)Google Scholar
  10. 10.
    De Raedt, L., Blockeel, H.: Using Logical Decision Trees for Clustering. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 133–140. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Emde, W.: Inductive learning of characteristic concept descriptions. In: Proc. 4th Intl Workshop on Inductive Logic Programming (ILP 1994) (1994)Google Scholar
  12. 12.
    Blockeel, H., De Raedt, L.: Top-down induction of first order logical decision trees. Artificial Intelligence 101, 285–297 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In: Proceedings of the 15th Intl. Conference on Machine Learning, pp. 55–63 (1998)Google Scholar
  14. 14.
    Estruch, V.: Bridging the gap between distance and generalisation:Symbolic learning in metric spaces. PhD thesis, DSIC-UPV (2008), http://www.dsic.upv.es/~vestruch/thesis.pdf
  15. 15.
    Funes, A., Ferri, C., Hernández-Orallo, J., Ramírez-Quintana, M.J.: Technical Report, DSIC (2008), http://www.dsic.upv.es/~flip/#Papers

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ana Maria Funes
    • 1
    • 2
  • Cesar Ferri
    • 2
  • Jose Hernández-Orallo
    • 2
  • Maria Jose Ramírez-Quintana
    • 2
  1. 1.Universidad Nacional de San LuisSan LuisArgentina
  2. 2.DSIC, Universidad Politécnica de ValenciaValencia

Personalised recommendations