Bootstrapping Information Extraction from Semi-structured Web Pages

  • Andrew Carlson
  • Charles Schafer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5211)


We consider the problem of extracting structured records from semi-structured web pages with no human supervision required for each target web site. Previous work on this problem has either required significant human effort for each target site or used brittle heuristics to identify semantic data types. Our method only requires annotation for a few pages from a few sites in the target domain. Thus, after a tiny investment of human effort, our method allows automatic extraction from potentially thousands of other sites within the same domain. Our approach extends previous methods for detecting data fields in semi-structured web pages by matching those fields to domain schema columns using robust models of data values and contexts. Annotating 2–5 pages for 4–6 web sites yields an extraction accuracy of 83.8% on job offer sites and 91.1% on vacation rental sites. These results significantly outperform a baseline approach.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu, B., Grossman, R.L., Zhai, Y.: Mining data records in web pages. In: KDD, pp. 601–606 (2003)Google Scholar
  2. 2.
    Soderland, S.: Learning information extraction rules for semi-structured and free text. Machine Learning 34(1-3), 233–272 (1999)MATHCrossRefGoogle Scholar
  3. 3.
    Kushmerick, N., Weld, D.S., Doorenbos, R.B.: Wrapper induction for information extraction. In: IJCAI, pp. 729–737 (1997)Google Scholar
  4. 4.
    Muslea, I., Minton, S., Knoblock, C.: A hierarchical approach to wrapper induction. In: AGENTS, pp. 190–197 (1999)Google Scholar
  5. 5.
    Chang, C.H., Lui, S.C.: IEPAD: information extraction based on pattern discovery. In: WWW, pp. 681–688 (2001)Google Scholar
  6. 6.
    Chang, C.-H., Kuo, S.-C.: OLERA: Semisupervised web-data extraction with visual support. IEEE Intelligent Systems 19(6), 56–64 (2004)CrossRefGoogle Scholar
  7. 7.
    Zhai, Y., Liu, B.: Web data extraction based on partial tree alignment. In: WWW, pp. 76–85 (2005)Google Scholar
  8. 8.
    Wang, J., Lochovsky, F.H.: Data extraction and label assignment for web databases. In: WWW, pp. 187–196 (2003)Google Scholar
  9. 9.
    Golgher, P.B., da Silva, A.S., Laender, A.H.F., Ribeiro-Neto, B.A.: Bootstrapping for example-based data extraction. In: CIKM, pp. 371–378 (2001)Google Scholar
  10. 10.
    Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.: Corpus-based schema matching. In: ICDE, pp. 57–68 (2005)Google Scholar
  11. 11.
    Freitag, D.: Multistrategy learning for information extraction. In: ICML, pp. 161–169 (1998)Google Scholar
  12. 12.
    Crescenzi, V., Mecca, G., Merialdo, P.: Wrapping-oriented classification of web pages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 1108–1112. Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Lee, L.: Measures of distributional similarity. In: ACL, pp. 25–32 (1999)Google Scholar
  14. 14.
    Ting, K.M., Witten, I.H.: Issues in stacked generalization. Journal of Artificial Intelligence Research 10, 271–289 (1999)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andrew Carlson
    • 1
  • Charles Schafer
    • 2
  1. 1.Machine Learning DepartmentCarnegie Mellon UniversityPittsburghUSA
  2. 2.Google, Inc.PittsburghUSA

Personalised recommendations