Learning to Predict One or More Ranks in Ordinal Regression Tasks

  • Jaime Alonso
  • Juan José del Coz
  • Jorge Díez
  • Oscar Luaces
  • Antonio Bahamonde
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5211)


We present nondeterministic hypotheses learned from an ordinal regression task. They try to predict the true rank for an entry, but when the classification is uncertain the hypotheses predict a set of consecutive ranks (an interval). The aim is to keep the set of ranks as small as possible, while still containing the true rank. The justification for learning such a hypothesis is based on a real world problem arisen in breeding beef cattle. After defining a family of loss functions inspired in Information Retrieval, we derive an algorithm for minimizing them. The algorithm is based on posterior probabilities of ranks given an entry. A couple of implementations are compared: one based on a multiclass SVM and other based on Gaussian processes designed to minimize the linear loss in ordinal regression tasks.


Gaussian Process Beef Cattle Ordinal Regression Feature Subset Selection Machine Learn Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chu, W., Ghahramani, Z.: Gaussian Processes for Ordinal Regression. The Journal of Machine Learning Research 6, 1019–1041 (2005)MathSciNetGoogle Scholar
  2. 2.
    Cardoso, J., da Costa, J.: Learning to Classify Ordinal Data: The Data Replication Method. The Journal of Machine Learning Research 8, 1393–1429 (2007)Google Scholar
  3. 3.
    Joachims, T.: Training linear SVMs in linear time. In: Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD). ACM, New York (2006)Google Scholar
  4. 4.
    Shen, L., Joshi, A.: Ranking and Reranking with Perceptron. Machine Learning 60(1), 73–96 (2005)CrossRefGoogle Scholar
  5. 5.
    Yu, S., Yu, K., Tresp, V., Kriegel, H.: Collaborative ordinal regression. In: Proceedings of the 23rd International Conference on Machine Learning (ICML 2006), pp. 1089–1096 (2006) Google Scholar
  6. 6.
    Agarwal, A., Davis, J., Ward, T.: Supporting ordinal four-state classification decisions using neural networks. Information Technology and Management 2(3), 5–26 (2001)CrossRefGoogle Scholar
  7. 7.
    del Coz, J.J., Bayón, G.F., Díez, J., Luaces, O., Bahamonde, A., Sañudo, C.: Trait selection for assessing beef meat quality using non-linear SVM. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17 (NIPS 2004), pp. 321–328. MIT Press, Cambridge (2005)Google Scholar
  8. 8.
    Shafer, G., Vovk, V.: A Tutorial on Conformal Prediction. Journal of Machine Learning Research 9, 371–421 (2008)Google Scholar
  9. 9.
    Clare, A., King, R.: Predicting gene function in Saccharomyces cerevisiae. Bioinformatics 19(2), 42–49 (2003)CrossRefGoogle Scholar
  10. 10.
    Kriegel, H., Kroger, P., Pryakhin, A., Schubert, M.: Using Support Vector Machines for Classifying Large Sets of Multi-Represented Objects. In: Proc. 4th SIAM Int. Conf. on Data Mining, pp. 102–114 (2004)Google Scholar
  11. 11.
    Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. The Journal of Machine Learning Research 5, 975–1005 (2004)MathSciNetGoogle Scholar
  12. 12.
    Chu, W., Keerthi, S.S.: New approaches to support vector ordinal regression. In: Proceedings of the ICML 2005, Bonn, Germany, pp. 145–152 (2005)Google Scholar
  13. 13.
    Piedrafita, J., Quintanilla, R., Sañudo, C., Olleta, J., Campo, M., Panea, B., Renand, G., Turin, F., Jabet, S., Osoro, K., Oliván, M.C., Noval, G., García, P., García, M., Cruz-Sagredo, R., Oliver, M., Gispert, M., Serra, X., Espejo, M., García, S., López, M., Izquierdo, M.: Carcass quality of 10 beef cattle breeds of the Southwest of Europe in their typical production systems. Livestock Production Science 82(1), 1–13 (2003)CrossRefGoogle Scholar
  14. 14.
    Luaces, O., Bayón, G.F., Quevedo, J.R., Díez, J., del Coz, J.J., Bahamonde, A.: Analyzing sensory data using non-linear preference learning with feature subset selection. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 286–297. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Díez, J., del Coz, J.J., Sañudo, C., Albertí, P., Bahamonde, A.: A kernel based method for discovering market segments in beef meat. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 462–469. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Alonso, J., Bahamonde, A., Villa, A., Castañón, Á.R.: Morphological assessment of beef catle according to carcass value. Livestock Science 107, 265–273 (2007)CrossRefGoogle Scholar
  17. 17.
    Bahamonde, A., Bayón, G.F., Díez, J., Quevedo, J.R., Luaces, O., del Coz, J.J., Alonso, J., Goyache, F.: Feature subset selection for learning preferences: A case study. In: Greiner, R., Schuurmans, D. (eds.) Proceedings of the International Conference on Machine Learning (ICML 2004), pp. 49–56 (2004)Google Scholar
  18. 18.
    Kusabs, N., Bollen, F., Trigg, L., Holmes, G., Inglis, S.: Objective measurement of mushroom quality. In: Proc. New Zealand Institute of Agricultural Science and the New Zealand Society for Horticultural Science Annual Convention (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jaime Alonso
    • 1
  • Juan José del Coz
    • 1
  • Jorge Díez
    • 1
  • Oscar Luaces
    • 1
  • Antonio Bahamonde
    • 1
  1. 1.Artificial Intelligence Center.University of Oviedo at GijónAsturiasSpain

Personalised recommendations