Advertisement

A Methodology for the Automatic Regulation of Intersections in Real Time Using Soft-Computing Techniques

  • Eusebio Angulo
  • Francisco P. Romero
  • Ricardo García
  • Jesús Serrano-Guerrero
  • José A. Olivas
Part of the Communications in Computer and Information Science book series (CCIS, volume 14)

Abstract

This work presents an application of diverse soft-computing techniques to the resolution of semaphoric regulation problems. First, clustering techniques are used to discover the prototypes which characterize the mobility patterns at an intersection. A prediction model is then constructed on the basis of the prototypes found. Fuzzy logic techniques are used to formally represent the prototypes in this prediction model and these prototypes are parametrically defined through frameworks. The use of these techniques supposes a substancial contribution to the significance of the prediction model, making it robust in the face of anomalous mobility patterns, and efficient from the point of view of real-time computation.

Keywords

Regulating traffic lights soft-computing clustering estimation models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wiering, M., Vreeken, J., Van Veenen, J., Koopman, A.: Simulation and optimization of traffic in a city. In: IEEE Intelligent Vehicles Symposium, Proceedings, pp. 453–458 (2004)Google Scholar
  2. 2.
    Rouphail, N., Park, B., Sacks, J.: Direct signal timing optimization: Strategy development and results. In: XIth Pan American Conference on Traffic and Transportation Engineering (2000)Google Scholar
  3. 3.
    Lim, G.Y., Kang, J.J., Hong, Y.S.: The optimization of traffic signal light using artificial intelligence. In: Proc. 10th IEEE Int. Conf. Fuzzy Syst., December 2-5, 2001, vol. 3, pp. 1279–1282 (2001)Google Scholar
  4. 4.
    Lei, C., Guojiang, S., Wei, Y.: The traffic flow model for single intersection and its traffic light intelligent control strategy. In: Proceedings of the World Congress on Intelligent Control and Automation (WCICA) 2, art. No. 1713650, pp. 8558–8562 (2006)Google Scholar
  5. 5.
    Van Leeuwaarden, J.S.H.: Delay analysis for the fixed-cycle traffic-light queue. Transportation Science 40(2), 189–199 (2006)CrossRefGoogle Scholar
  6. 6.
    Lim, G.Y., Kang, J.J., Hong, Y.S.: The optimization of traffic signal light using artificial intelligence. In: IEEE International Conference on Fuzzy Systems, vol. 3, pp. 1279–1282 (2002)Google Scholar
  7. 7.
    Hoyer, R., Jumar, U.: Fuzzy control of traffic lights. In: IEEE International Conference on Fuzzy Systems, vol. 3, pp. 1526–1531 (1994)Google Scholar
  8. 8.
    Sánchez, J., Galán, M., Rubio, E.: Applying a Traffic Lights Evolutionary Optimization Technique to a Real Case: ”Las Ramblas” Area in Santa Cruz de Tenerife. IEEE Transactions on evolutionary computation 12(1), 25–40 (2008)CrossRefGoogle Scholar
  9. 9.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD Process for Extracting Useful Knowledge from Volumes of Data. Communications of the ACM 39(11), 27–34 (1996)CrossRefGoogle Scholar
  10. 10.
    Kawaji, H., Yamaguchi, Y., Matsuda, H., Hashimoto, A.: A Graph-Based Clustering Method for a Large Set of Sequences Using a Graph Partitioning Algorithm. Genome Informatics 12, 93–102 (2001)Google Scholar
  11. 11.
    Dong, Y., Zhuang, Y., Chen, K., Taib, X.: A hierarchical clustering algorithm based on fuzzy graph connectedness. Fuzzy Sets and Systems 157, 1760–1774 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Eusebio Angulo
    • 1
  • Francisco P. Romero
    • 1
  • Ricardo García
    • 1
  • Jesús Serrano-Guerrero
    • 1
  • José A. Olivas
    • 1
  1. 1.Escuela Superior de InformáticaUniversidad de Castilla - La ManchaCiudad Real, EspañaSpain

Personalised recommendations