Advertisement

Scalability Analysis of a Novel Integer Programming Model to Deal with Energy Consumption in Heterogeneous Wireless Sensor Networks

  • Alexei Aguiar
  • Plácido Rogério Pinheiro
  • André L. V. Coelho
  • Napoleão Nepomuceno
  • Álvaro Neto
  • Ruddy P. P. Cunha
Part of the Communications in Computer and Information Science book series (CCIS, volume 14)

Abstract

This paper presents a scalability analysis over a novel integer programming model devoted to optimize power consumption efficiency in heterogeneous wireless sensor networks. This model is based upon a schedule of sensor allocation plans in multiple time intervals subject to coverage and connectivity constraints. By turning off a specific set of redundant sensors in each time interval, it is possible to reduce the total energy consumption in the network and, at the same time, avoid partitioning the whole network by losing some strategic sensors too prematurely. Since the network is heterogeneous, sensors can sense different phenomena from different demand points, with different sample rates. As the problem instances grows the time spent to the execution turns impractcable.

Keywords

Sensor Node Wireless Sensor Network Network Lifetime Total Energy Consumption Demand Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Megerian, S., Potkonjak, M.: Lower power 0/1 coverage and scheduling techniques in sensor networks. Technical Reports Vol. 030001. University of California, Los Angeles (2003)Google Scholar
  2. 2.
  3. 3.
    ILOG: ILOG CPLEX 9.0 User’s Manual (2003)Google Scholar
  4. 4.
    Loureiro, A., Ruiz, L., Mini, R., Nogueira, J.: Redes de sensores sem fio. Simpósio Brasileiro de Computação, Jornada de Atualização de Informática (2002)Google Scholar
  5. 5.
    Megerian, S., Koushanfar, F., Qu, G., Veltri, G., Potkonjak, M.: Exposure in wireless sensor networks: Theory and practical solutions. Wireless Networks 8(5), 443–454 (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Nakamura, F.G., Quintão, F.P., Menezes, G.C., Mateus, G.R.: Planejamento dinâmico para controle de cobertura e conectividade em redes de sensores sem fio. In: Workshop de Comunicação sem Fio e Computação Móvel, vol. 1, pp. 182–191 (2004)Google Scholar
  7. 7.
    Nepomuceno, N.V., Pinheiro, P.R., Coelho, A.L.V.: A Hybrid Optimization Framework for Cutting and Packing Problems: Case Study on Constrained 2D Non-guillotine Cutting. In: Cotta, C., Hemert., J. (eds.) Recent Advances in Evolutionary Computation for Combinatorial Optimization. Springer, Heidelberg (to appear)Google Scholar
  8. 8.
    Nepomuceno, N., Pinheiro, P.R., Coelho, A.L.V.: Tackling the container loading problem: A hybrid approach based on integer linear programming and genetic algorithms. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 154–165. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alexei Aguiar
    • 1
  • Plácido Rogério Pinheiro
    • 1
  • André L. V. Coelho
    • 1
  • Napoleão Nepomuceno
    • 1
  • Álvaro Neto
    • 1
  • Ruddy P. P. Cunha
    • 1
  1. 1.Mestrado em Informática AplicadaUniversidade de FortalezaFortalezaBrazil

Personalised recommendations