LibGeoDecomp: A Grid-Enabled Library for Geometric Decomposition Codes

  • Andreas Schäfer
  • Dietmar Fey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5205)


In this paper we present first results obtained with LibGeoDecomp, a work in progress library for scientific and engineering simulations on structured grids, geared at multi-cluster and grid systems. Today’s parallel computers range from multi-core PCs to highly scaled, heterogeneous grids. With the growing complexity of grid resources on the one hand, and the increasing importance of computer based simulations on the other, the agile development of highly efficient and adaptable parallel applications is imperative. LibGeoDecomp is to our knowledge the first library to support all state of the art features from dynamic load balancing and exchangeable domain decomposition techniques to ghost zones with arbitrary width and parallel IO, along with a hierarchical parallelization whose layers can be adapted to reflect the underlying hierarchy of the grid system.


Grid computing self-adaptation hierarchical parallelization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schäfer, A., Erdmann, J., Fey, D.: Simulation of Dendritic Growth for Materials Science in Multi-Cluster Environments. In: Workshop Grid4TS, vol. 3 (2007)Google Scholar
  2. 2.
    Allen, G., Dramlitsch, T., Foster, I., Karonis, N., Ripeanu, M., Seidel, E., Toonen, B.: Supporting Efficient Execution in Heterogeneous Distributed Computing Environments with Cactus and Globus. In: Proceedings of Supercomputing 2001, Denver, USA (2001)Google Scholar
  3. 3.
    Lani, A., Quintino, T., Kimpe, D., Deconinck, H., Vandewalle, S., Poedts, S.: The COOLFluiD Framework: Design Solutions for High Performance Object Oriented Scientific Computing Software. In: Computational Science, ICCS 2005, Atlanta, GA, USA, pp. 279–286 (2005)Google Scholar
  4. 4.
    Schäfer, A., Fey, D.: Pollarder: An Architecture Concept for Self-adapting Parallel Applications in Computational Science. In: Computational Science - ICCS. LNCS, vol. 5101, pp. 174–183. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Niedermeier, R., Reinhardt, K., Sanders, P.: Towards Optimal Locality in Mesh-Indexings. In: FCT 1997. LNCS, vol. 1279, pp. 364–375. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Schloegel, K., Karypis, G., Kumar, V.: Parallel Multilevel Diffusion Algorithms for Repartitioning of Adaptive Meshes. Technical Report TR 97-014 (1997)Google Scholar
  7. 7.
    Morton, G.M.: A computer Oriented Geodetic Data Base and a New Technique in File Sequencing. Technical report, IBM, Ottawa, Canada (1966)Google Scholar
  8. 8.
    López, R., Pérez, C.: Improving mpi support for applications on hierarchically distributed resources. In: Cappello, F., Herault, T., Dongarra, J. (eds.) PVM/MPI 2007. LNCS, vol. 4757, pp. 187–194. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andreas Schäfer
    • 1
  • Dietmar Fey
    • 1
  1. 1.Lehrstuhl für Rechnerarchitektur und -kommunikation, Institut für InformatikFriedrich-Schiller-UniversitätJenaGermany

Personalised recommendations