Cell Bounds in Two-Way Contingency Tables Based on Conditional Frequencies

  • Byran Smucker
  • Aleksandra B. Slavković
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5262)


Statistical methods for disclosure limitation (or control) have seen coupling of tools from statistical methodologies and operations research. For the summary and release of data in the form of a contingency table some methods have focused on evaluation of bounds on cell entries in k-way tables given the sets of marginal totals, with less focus on evaluation of disclosure risk given other summaries such as conditional probabilities, that is, tables of rates derived from the observed contingency tables. Narrow intervals - especially for cells with low counts - could pose a privacy risk. In this paper we derive the closed-form solutions for the linear relaxation bounds on cell counts of a two-way contingency table given observed conditional probabilities. We also compute the corresponding sharp integer bounds via integer programming and show that there can be large differences in the width of these bounds, suggesting that using the linear relaxation is often an unacceptable shortcut to estimating the sharp bounds and the disclosure risk.


Confidentiality Contingency tables Integer programming Linear programming Statistical disclosure control Tabular data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonferroni, C.E.: Teoria statistica delle classi e calcolo delle probabilitá. Publicazioni del R. Instituto Superiore di Scienze Economiche e Commerciali di Firenze, 8 (1936)Google Scholar
  2. 2.
    Buzzigoli, L., Gusti, A.: An algorithm to calculate the upper and lower bounds of the elements of an array given its marginals. In: Statistical Data Protection (SDP 1998) Proceedings, pp. 131–147. Eurostat, Luxembourg (1998)Google Scholar
  3. 3.
    Cox, L.: Bounds on entries in 3-dimensional contingency tables. In: Domingo-Ferrer, J. (ed.) Inference Control in Statistical Databases. LNCS, vol. 2316, pp. 21–33. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Cox, L.: Contingency tables of network type: Models, markov basis and applications. Statistica Sinica 17, 1371–1393 (2007)MATHGoogle Scholar
  5. 5.
    Dobra, A., Fienberg, S., Rinaldo, A., Slavković, A., Zhou, Y.: Algebraic statistics and contingency table problems: Log-linear models, likelihood estimation and disclosure limitation. In: Putinar, M., Sullivant, S. (eds.) IMA Volumes in Mathematics and its Applications: Emerging Applications of Algebraic Geometry, vol. 149, pp. 63–88. Springer, Heidelberg (2008)Google Scholar
  6. 6.
    Dobra, A., Fienberg, S.E.: Bounds for cell entries in contingency tables given marginal totals and decomposable graphs. Statistical Journal of the United Nations Economic Commission for Europe 18(4), 363–371 (2001)Google Scholar
  7. 7.
    Dobra, A., Fienberg, S.E.: Bounds for cell entries in contingency tables induced by fixed marginal totals. Statistical Journal of the United Nations ECE 18, 363–371 (2003)Google Scholar
  8. 8.
    Federal Committe on Statistical Methodology, Statistical Policy Working Paper 22 (Version Two). Report on Statistical Disclosure Limitation Methodology (2005)Google Scholar
  9. 9.
    Fienberg, S.E.: Fréchet and Bonferroni bounds for multi-way tables of counts with applications to disclosure limitation. In: Statistical Data Protection: Proceedings of the Conference, pp. 115–129. Eurostat, Luxembourg (1999)Google Scholar
  10. 10.
    Fienberg, S.E.: Contingency tables and log-linear models: Basic results and new developments. Journal of the American Statistical Association 95(450), 643–647 (2000)CrossRefGoogle Scholar
  11. 11.
    Fienberg, S.E., Slavkovic, A.B.: Preserving the confidentiality of categorical statistical data bases when releasing information for association rules. Data Mining and Knowledge Discovery 11, 155–180 (2005)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Fréchet, M.: Les Probabilitiés Associées a un Système dÉvénments Compatibles et Dépendants, Vol. Premiere Partie. Hermann & Cie, Paris (1940)Google Scholar
  13. 13.
    Hoeffding, W.: Scale-invariant correlation theory. Schriften des Mathematischen Instituts und des Instituts fur Angewandte Mathematik der Universit at Berlin 5(3), 181–233 (1940)Google Scholar
  14. 14.
    Hosten, S., Sturmfels, B.: Computing the integer programming gap (2003), http://www.citebase.org/abstract?id=oai:arXiv.org:math/0301266
  15. 15.
    ILOG CPLEX, ILOG CPLEX 10.1 User’s Manual. ILOG (2006)Google Scholar
  16. 16.
    Lee, J., Slavković, A.: Synthetic tabular data preserving the observed conditional probabilities. In: PSD 2008 (submitted, 2008)Google Scholar
  17. 17.
    Lu, H., Li, Y., Wu, X.: Disclosure analysis for two-way contingency tables. In: Domingo-Ferrer, J., Franconi, L. (eds.) PSD 2006. LNCS, vol. 4302, pp. 57–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-Interscience (1988)Google Scholar
  19. 19.
    Onn, S.: Entry uniqueness in margined tables. In: Domingo-Ferrer, J., Franconi, L. (eds.) PSD 2006. LNCS, vol. 4302, pp. 94–101. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Salazar-Gonzalez, J.-J.: Statistical confidentiality: Optimization techniques to protect tables. Computers and Operations Research 35, 1638–1651 (2008)MATHCrossRefGoogle Scholar
  21. 21.
    Slavković, A.B.: Statistical Disclosure Limitation Beyond the Margins: Characterization of Joint Distributions for Contingency Tables. PhD thesis, Carnegie Mellon University (2004)Google Scholar
  22. 22.
    Slavković, A.B., Fienberg, S.E.: Bounds for cell entries in two-way tables given conditional relative frequencies. In: Domingo-Ferrer, J., Torra, V. (eds.) PSD 2004. LNCS, vol. 3050, pp. 30–43. Springer, Heidelberg (2004)Google Scholar
  23. 23.
    Smucker, B., Slavković, A.: Cell bounds in K-way tables given conditional frequencies. Journal of Official Statistics (to be submitted, 2008)Google Scholar
  24. 24.
    Sullivant, S.: Small contingency tables with large gaps. Siam J. Discrete Math. 18(4), 787–793 (2005)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Willenborg, L., de Waal, T.: Statistical Disclosure Control in Practice. Lecture Notes in Statistics III. Springer, New York (1996)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Byran Smucker
    • 1
  • Aleksandra B. Slavković
    • 1
  1. 1.Department of StatisticsPennsylvania State UniversityU.S.A.

Personalised recommendations