Probe Selection with Fault Tolerance

  • Sheng-Lung Peng
  • Yu-Wei Tsay
  • Tai-Chun Wang
  • Chuan Yi Tang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5226)


Microarray techniques play an important role for testing some reactions of diseases which are caused by viruses. Probes in microarray are one kind of the most important materials. Usually, scientists use a unique probe for marking a special target sequence. Thus, for identifying n different viruses, we need n different probes. Recently, some researchers study non-unique probes to identify viruses by using less number of probes. In this case, a virus can be identified by a combination of some probes. In this paper, we study the problem of finding a set of probes that can identify all the given targets. We consider the k-fault tolerance selection of probes. That is, if any k probes fail, then we still can identify each target. We propose a practical algorithm for this k-fault tolerance probe selection problem. Some experiments are studied on SARS, H5N1, and so on.


Probe Selection Integer Linear Programming Fault Tolerance Target Pair Unique Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abbas, A.K., Lichtman, A.: Cellular and Molecular Immunology, 5th edn. Saunders, Philadelphia (2005)Google Scholar
  2. 2.
    Bushel, P.R., Hamadeh, H., Bennett, L., Sieber, S., Martin, K., Nuwaysir, E.F., Johnson, K., Reynolds, K., Paules, R.S., Afshari, C.A.: Maps: a microarray project system for gene expression experiment information and data validation. Bioinformatics 17, 564–565 (2001)CrossRefGoogle Scholar
  3. 3.
    Chung, W.H., Rhee, S.K., Wan, X.F., Bae, J.W., Quan, Z.X., Park, Y.H.: Design of long oligonucleotide probes for functional gene detection in a microbial community. Bioinformatics 21, 4092–4100 (2005)CrossRefGoogle Scholar
  4. 4.
    Cooper, C.S.: Applications of microarray technology in breast cancer research. The Institute of Cancer Research 3, 158–175 (2001)Google Scholar
  5. 5.
    He, Y.D., Dai, H., Schadt, E.E., Cavet, G., Edwards, S.W., Stepaniants, S.B., Kleinhanz, S.D.R., Jones, A.R., Shoemaker, D.D., Stoughton, R.B.: Microarray standard data set and figures of merit for comparing data processing methods and experiment designs. Bioinformatics 19, 956–965 (2003)CrossRefGoogle Scholar
  6. 6.
    Klau, G.W., Rahmann, S., Schliep, A., Vingron, M., Reinert, K.: Optimal robust non-unique probe selection using integer linear programming. Bioinformatics 20(Suppl. 1), i186– i193 (2004)CrossRefGoogle Scholar
  7. 7.
    Klau, G.W., Rahmann, S., Schliep, A., Vingron, M., Reinert, K.: Integer linear programming approaches for non-unique probe selection. Discrete Applied Mathematics 155, 840–856 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Petricoin, E.F., Hackett, J.L., Lesko, L.J., Puri, R.K., Gutman, S.I., Chumakov, K., Woodcock, J., Feigal Jr., D.W., Zoon, K.C., Sistare, F.D.: Medical applications of microarray technologies: a regulatory science perspective. Nature Genetics Supplement 32, 474–479 (2002)CrossRefGoogle Scholar
  9. 9.
    Rahmann, S.: Rapid large-scale oligonucleotide selection for microarrays. In: The First IEEE Computer Society Bioinformatics Conference, pp. 54–63 (2002)Google Scholar
  10. 10.
    Rahmann, S., Muller, T., Vingron, M.: Non-unique probe selection by matrix condition optimization. Currents in Computational Molecular Biology (2004)Google Scholar
  11. 11.
    Rimour, S., Hill, D., Militon, C., Peyret, P.: Goarrays: highly dynamic and efficient microarray probe design. Bioinformatics 21, 1094–1106 (2005)CrossRefGoogle Scholar
  12. 12.
    Rouillard, J.M., Zuker, M., Gulari, E.: Oligoarray 2.0: design of oligonucleotide probes for dna microarrays using a thermodynamic approach. Nucleic Acids Research 31, 3057–3062 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sheng-Lung Peng
    • 1
  • Yu-Wei Tsay
    • 1
  • Tai-Chun Wang
    • 1
  • Chuan Yi Tang
    • 2
  1. 1.Department of Computer Science and Information EngineeringNational Dong Hwa UniversityHualienTaiwan
  2. 2.Department of Computer ScienceNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations