EMD Approach to Multichannel EEG Data - The Amplitude and Phase Synchrony Analysis Technique

  • Tomasz M. Rutkowski
  • Danilo P. Mandic
  • Andrzej Cichocki
  • Andrzej W. Przybyszewski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5226)

Abstract

Human brains expose the possibility to be connected directly to the intelligent computing applications in form of brain computer/ machine interfacing (BCI/BMI) technologies. Neurophysiological signals and especially electroencephalogram (EEG) are the forms of brain electrical activity which can be easily captured and utilized for BCI/BMI applications. Those signals are unfortunately highly contaminated by noise due to a very low level of electrophysiological signals and presence of different devices in the environment creating electromagnetic interference. In the proposed approach we first decompose each of the recorded channels, in multichannel EEG recording environment, into intrinsic mode functions (IMF) which are a result of empirical mode decomposition (EMD) extended to multichannel analysis in this paper. We present novel and interesting results on human mental and cognitive states estimation based on analysis of the above mentioned stimuli-related IMF components.

Keywords

EEG brain synchrony brain signal processing EMD application to EEG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rutkowski, T.M., Vialatte, F., Cichocki, A., Mandic, D., Barros, A.K.: Auditory Feedback for Brain Computer Interface Management - An EEG Data Sonification Approach. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4253, pp. 1232–1239. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Rutkowski, T.M., Cichocki, A., Ralescu, A.L., Mandic, D.P.: Emotional States Estimation from Multichannel EEG Maps. In: Wang, R., Gu, F., Shen, E. (eds.) Advances in Cognitive Neurodynamics ICCN 2007 - Proceedings of the International Conference on Cognitive Neurodynamics. Neuroscience, Springer, Heidelberg (in press, 2008) Google Scholar
  3. 3.
    Rutkowski, T.M., Cichocki, A., Mandic, D.P.: EMDsonic - An Empirical Mode Decomposition Based Brain Signal Activity Sonification Approach. Information Technology: Transmission, Processing and Storage. In: Signal Processing Techniques for Knowledge Extraction and Information Fusion, February 2008, pp. 261–274. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer Interfaces for Communication and Control. Clinical Neurophysiology 113, 767–791 (2002)CrossRefGoogle Scholar
  5. 5.
    Huang, N., Shen, Z., Long, S., Wu, M., Shih, H., Zheng, Q., Yen, N.C., Tung, C., Liu, H.: The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, March 1998, vol. 454, pp. 903–995 (1998)Google Scholar
  6. 6.
    Kelly, S.P., Lalor, E.C., Finucane, C., McDarby, G., Reilly, R.B.: Visual Spatial Attention Control in an Independent Brain-computer Interface. IEEE Transactions on Biomedical Engineering 52(9), 1588–1596 (2005)CrossRefGoogle Scholar
  7. 7.
    Niedermeyer, E., Da Silva, F.L. (eds.): Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th edn. Lippincott Williams & Wilkins (2004)Google Scholar
  8. 8.
    Przybyszewski, A.W., Rutkowski, T.M.: Processing of the Incomplete Representation of The Visual World. In: Hryniewicz, O., Kacpryzk, J., Koronacki, J., Wierzchon, S. (eds.) Issues in Intelligent Systems Paradigms. Problemy Wspolczesnej Nauki - Teoria i Zastosowania - Informatyka, pp. 225–235. Akademicka Oficyna Wydawnicza EXIT, Warsaw, Poland (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Tomasz M. Rutkowski
    • 1
  • Danilo P. Mandic
    • 2
  • Andrzej Cichocki
    • 1
  • Andrzej W. Przybyszewski
    • 3
    • 4
  1. 1.Laboratory for Advanced Brain Signal ProcessingRIKEN Brain Science InstituteJapan
  2. 2.Imperial College LondonUnited Kingdom
  3. 3.Department of PsychologyMcGill UniversityMontrealCanada
  4. 4.Department of NeurologyUniversity of Massachusetts Medical SchoolUSA

Personalised recommendations