Micromanipulation Using a Microassembly Workstation with Vision and Force Sensing

  • Hakan Bilen
  • Mustafa Unel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5226)


This paper reports our ongoing work on a microassembly workstation developed for efficient and robust 3D automated assembly of microobjects. The workstation consists of multiple view imaging system, two 3-DOF high precision micromanipulators, and a 3-DOF positioning stage with high resolution rotation control, force sensing probe and gripper, and the control software system. A hybrid control scheme using both vision and force sensory information is proposed for precise and dexterous manipulation of microobjects. A micromanipulation experiment that aims to locate the microspheres to the predefined configuration by using an integrated vision and force control scheme is successfully demonstrated to show the validity of the proposed methods.


microassembly micromanipulation visual servoing force control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kim, B., Kang, H., Kim, D.H., Park, G.T., Park, J.O.: Flexible Microassembly System based on Hybrid Manipulation Scheme. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Nevada, pp. 2061–2066 (2003)Google Scholar
  2. 2.
    Popa, D., Kang, B.H., Sin, J., Zou, I.: Reconfigurable Microassembly System For Photonics Applications. In: Int. Conf. on Robotics and Automation, Washington, pp. 1495–1500 (2002)Google Scholar
  3. 3.
    Yang, G., Gaines, J.A., Nelson, B.J.: A Flexible Experimental Workcell For Efficient And Reliable Wafer-Level 3D Micro-assembly. In: IEEE Int. Conf. Robotics and Automation, vol. 1, pp. 133–138 (2001)Google Scholar
  4. 4.
    Wang, W.H., Liu, X.Y., Sun, Y.: Autonomous Zebrafish Embryo Injection Using a Microrobotic System. In: Int. Conf. on Automation Science and Engineering, pp. 363–368. IEEE Press, Los Alamitos (2007)CrossRefGoogle Scholar
  5. 5.
    Kim, D.-H., Hwang, C.N., Sun, Y., Lee, S.H., Kim, B., Nelson, B.J.: Mechanical Analysis of Chorion Softening in Prehatching Stages of Zebrafish Embryos. IEEE Trans. n Nanobioscience 5(2), 89–94 (2006)CrossRefGoogle Scholar
  6. 6.
    Sun, Y., Nelson, B.J.: Microrobotic Cell Injection. In: Int. Conf. on Robotics and Automation, vol. 1, pp. 620–625 (2001)Google Scholar
  7. 7.
    Dionnet, F., Haliyo, D.S., Regnier, S.: Autonomous Micromanipulation using a New Strategy of Accurate Release by Rolling. In: IEEE Int. Conf. on Robotics and Automation, vol. 5, pp. 5019–5024 (2004)Google Scholar
  8. 8.
    Pawashe, C., Sitti, M.: Two-Dimensional Vision-Based Autonomous Microparticle Assembly using Nanoprobes. Journal of Micromechatronics 3(3-5), 285–306 (2006)CrossRefGoogle Scholar
  9. 9.
    Ren, L., Wang, L., Mills, J.K., Sun, D.: 3-D Automatic Microassembly by Vision-Based Control. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, San Diego, pp. 297–302 (2007)Google Scholar
  10. 10.
    Arai, F., Kawaji, A., Sugiyama, T., Onomura, Y., Ogawa, M., Fukuda, T., Iwata, H., Itoigawa, K.: 3D Micromanipulation System Under Microscope. In: Int. Symposium on Micromechatronics and Human Science, pp. 127–134 (1998)Google Scholar
  11. 11.
    Tsai, R.Y.: A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses. IEEE Journal of Robotics and Automation 3, 323–344 (1987)CrossRefGoogle Scholar
  12. 12.
    Zhang, Z.Y.: Flexible Camera Calibration by Viewing a Plane from Unknown Orientations. In: IEEE Int. Conf. on Computer Vision, pp. 666–673 (1999)Google Scholar
  13. 13.
    Zhou, Y., Nelson, B.J.: Calibration of A Parametric Model of An Optical Microscope. Optical Engineering 38, 1989–1995 (1999)CrossRefGoogle Scholar
  14. 14.
    Ammi, M., Fremont, V., Ferreira, A.: Flexible Microscope Calibration using Virtual Pattern for 3-D Tele micromanipulation. IEEE Trans. on Robotics and Automation, 3888–3893 (2005)Google Scholar
  15. 15.
    Bohringer, K.-F., Donald, B.R., Mihailovich, R., MacDonald, N.C.: Sensorless Manipulation Using Massively Parallel Microfabricated Actuator Arrays. In: IEEE Int. Conf. on Robotics and Automation, pp. 826–833 (1998)Google Scholar
  16. 16.
    Espiau, B., Chaumette, F., Rives, P.: A New Approach to Visual Servoing in Robotics. IEEE Transactions on Robotics and Automation 8(3), 313–326 (1992)CrossRefGoogle Scholar
  17. 17.
    Bilen, H., Hocaoglu, M., Ozgur, E., Unel, M., Sabanovic, A.: A Comparative Study of Conventional Visual Servoing Schemes in Microsystem Applications. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, San Diego, pp. 1308–1313 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hakan Bilen
    • 1
  • Mustafa Unel
    • 1
  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey

Personalised recommendations