Advertisement

Performance Analysis of Dynamic Priority Shifting

  • Philipp Reinecke
  • Katinka Wolter
  • Johannes Zapotoczky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5261)

Abstract

We investigate the benefit of priority shifting for resource allocation in systems with a shared resource, where higher priority implies better service. Priority schemes where priority levels are assigned fixed shares of the resource experience underutilisation if there are only low-priority tasks present. In these situations, lower priority tasks can be ‘shifted up’ to higher priority. This increases overall system utilisation and improves the service experienced by low-priority tasks. We present a shifting framework, study its properties and develop a Petri net model for a shifting algorithm. We analyse the model in order to identify situations where shifting of priorities is beneficial.

Keywords

Medium Access Control Task Allocation Contention Window Service Function Enhanced Distribute Channel Access 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kopetz, H.: Real-Time Systems Design Principles for Distributed Embedded Applications. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  2. 2.
    Bhatia, R., Segall, A., Zussman, G.: Analysis of Bandwidth Allocation Algorithms for Wireless Personal Area Networks. ACM/Springer Wireless Networks (WINET) 12(5), 589–603 (2006)CrossRefGoogle Scholar
  3. 3.
    Terré, M., Vivier, E., Fino, B.: Optimisation of Downlink Resource Allocation Algorithms for UMTS Networks. EURASIP Journal on Wireless Communication and Networking 5(4), 573–578 (2005)CrossRefGoogle Scholar
  4. 4.
    IEEE 802.11 Working Group: Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications. Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements (802.11e) (last seen June 6, 2008), http://www.ieee802.org/11/
  5. 5.
    Wolski, R., Brevik, J., Plank, J., Bryan, T.: Grid resource allocation and control using computational economies. In: Berman, F., Fox, G., Hey, T. (eds.) Grid Computing: Making the Global Infrastructure a Reality, pp. 747–772. Wiley and Sons, Chichester (2003)Google Scholar
  6. 6.
    Wolski, R., Obertelli, G., Allen, M., Nurmi, D., Brevik, J.: Predicting Grid Resource Performance On-line. In: Handbook of Innovative Computing: Models, Enabling Technologies, and Applications. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Zapotoczky, J., Wolter, K.: Increasing Performance of the 802.11e Protocol through Access Category Shifting. In: Proc. International Conference on Quantitative Evaluation of Systems (MMB 2008), Dortmund, Germany, pp. 195–204 (2008)Google Scholar
  8. 8.
    Zhao, Y., Tavares, C.: Network adaptive priority management in wireless local area networks, USPTO Application No. 20070258419, Palo Alto, CA, US (2007)Google Scholar
  9. 9.
    Szekli, R.: Stochastic Ordering and Dependence in Applied Probability. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  10. 10.
    IEEE 802.11 Working Group: Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications (last seen June 6, 2008), http://www.ieee802.org/11/
  11. 11.
    Iera, A., Ruggeri, G., Tripodi, D.: Providing Throughput Guarantees in 802.11e WLAN Through a Dynamic Priority Assignment Mechanism. Wireless Personal Communications 34, 109–125 (2005)CrossRefGoogle Scholar
  12. 12.
    Ge, Y., Hou, J.C., Choi, S.: An analytic study of tuning systems parameters in IEEE 802.11e enhanced distributed channel access. Comput. Netw. 51(8), 1955–1980 (2007)zbMATHCrossRefGoogle Scholar
  13. 13.
    Zimmermann, A., German, R., Freiheit, J., Hommel, G.: Petri Net Modelling and Performability Evaluation with TimeNET 3.0. In: Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 188–202. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Various authors: The Network Simulator ns-2 (last seen June 6, 2008), http://www.isi.edu/nsnam/ns/
  15. 15.
    Janert, P.: Gnuplot in Action: Understanding Data with Graphs. Manning Publications (2008) ISBN 978-1933988399Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Philipp Reinecke
    • 1
  • Katinka Wolter
    • 1
  • Johannes Zapotoczky
    • 1
  1. 1.Institut für InformatikHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations