State-Aware Performance Analysis with eXtended Stochastic Probes

  • Allan Clark
  • Stephen Gilmore
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5261)


We define a mechanism for specifying performance queries which combine instantaneous observations of model states and finite sequences of observations of model activities. We realise these queries by composing the state-aware observers (called eXtended Stochastic Probes (XSP)) with a model expressed in a stochastically-timed process algebra. Our work has been conceived in the context of the process algebra PEPA. However the ideas involved are relevant to all timed process algebras with an underlying discrete-state representation such as a continuous-time Markov chain.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argent-Katwala, A., Bradley, J., Dingle, N.: Expressing performance requirements using regular expressions to specify stochastic probes over process algebra models. In: Proceedings of the Fourth International Workshop on Software and Performance, Redwood Shores, California, USA, pp. 49–58. ACM Press, New York (2004)CrossRefGoogle Scholar
  2. 2.
    Bradley, J., Dingle, N., Gilmore, S., Knottenbelt, W.: Derivation of passage-time densities in PEPA models using IPC: The Imperial PEPA Compiler. In: Kotsis, G. (ed.) Proceedings of the 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems, University of Central Florida, pp. 344–351. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  3. 3.
    Clark, A.: The ipclib PEPA Library. In: Harchol-Balter, M., Kwiatkowska, M., Telek, M. (eds.) Proceedings of the 4th International Conference on the Quantitative Evaluation of SysTems (QEST), pp. 55–56. IEEE, Los Alamitos (2007)CrossRefGoogle Scholar
  4. 4.
    Argent-Katwala, A., Bradley, J., Clark, A., Gilmore, S.: Location-aware quality of service measurements for service-level agreements. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 222–239. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time Markov chains. ACM Trans. Comput. Logic 1, 162–170 (2000)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Baier, C., Cloth, L., Haverkort, B., Kuntz, M., Siegle, M.: Model checking action- and state-labelled Markov chains. In: DSN ’04: Proceedings of the 2004 International Conference on Dependable Systems and Networks, Washington, DC, USA, p. 701. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  8. 8.
    Donatelli, S., Haddad, S., Sproston, J.: CSLTA: an Expressive Logic for Continuous-Time Markov Chains. In: QEST 2007: Proceedings of the Fourth Interational Conference on Quantitative Evaluation of Systems, Washington, DC, USA, pp. 31–40. IEEE Computer Society, Los Alamitos (2007)CrossRefGoogle Scholar
  9. 9.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)Google Scholar
  10. 10.
    Hillston, J., Kloul, L.: An efficient Kronecker representation for PEPA models. In: de Alfaro, L., Gilmore, S. (eds.) PAPM-PROBMIV 2001. LNCS, vol. 2165, pp. 120–135. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Grassmann, W.: Transient solutions in Markovian queueing systems. Computers and Operations Research 4, 47–53 (1977)CrossRefGoogle Scholar
  12. 12.
    Gross, D., Miller, D.: The randomization technique as a modelling tool and solution procedure for transient Markov processes. Operations Research 32, 343–361 (1984)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Second International Conference on the Quantitative Evaluation of Systems, Torino, Italy, pp. 33–43. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  14. 14.
    Clark, A., Gilmore, S.: Evaluating quality of service for service level agreements. In: Brim, L., Leucker, M. (eds.) Proceedings of the 11th International Workshop on Formal Methods for Industrial Critical Systems, Bonn, Germany, pp. 172–185 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Allan Clark
    • 1
  • Stephen Gilmore
    • 1
  1. 1.University of EdinburghScotland

Personalised recommendations