Profiles in Pathogenesis and Mutualism: Powdery Mildews

  • Christopher James RidoutEmail author
Part of the The Mycota book series (MYCOTA, volume 5)


Pathogenic fungi have developed a wide range of strategies to infect and colonize plants. Traditionally they are grouped into the major classes necrotroph/ hemi-biotroph/biotroph, according to major criteria like their source of nutrition (living vs dead cells), their ability to infect young and healthy tissue or a preference to older or senescent ones, the formation of specialized infection structures (haustoria), and more recently the type of plant defence reaction they provoke (e.g. jasmonate vs salicylic acid pathway). In many cases these criteria do not allow unequivocal decisions for the grouping of pathogens, as pointed out in the recent review by Oliver and Ipcho (2004). As an example, they list references grouping Phythophthora infestans in all three classes, and other references naming Magnaporthe grisea a necrotroph or a hemi-biotroph. Detailed cytological analyses only recently brought unequivocal evidence about the true biotrophic nature of the early infection stage of M. grisea (Kankanala et al. 2007), but still the exact mode of the switch to necrotrophic growth is unclear. Thus it needs much more detailed structural and physiological studies to fully understand the nature of a specific fungus–host interaction; and the question remains whether the old classification system is still helpful, because of the large degree of variation observed in nature.


Powdery Mildew Powdery Mildew Resistance Gene Powdery Mildew Fungus Nonhost Resistance Wheat Powdery Mildew 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An QL, Ehlers K Kogel KH, van Bel AJE, Huckelhoven R (2006) Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus. New Phytol 172:563-576PubMedCrossRefGoogle Scholar
  2. Assaad F F, Qiu J L, Youngs H, Ehrhardt D,Zimmerli L, Kalde M, Wanner G, Peck SC, Edwards H, Ramonell K et al (2004) The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae Mol. Biol. Cell 15:5118-5129Google Scholar
  3. Baker SJ, Newton AC, Gurr SJ (2000) Cellular characteristics of temporary partial breakdown of mlo-resistance in barley to powdery mildew. Physiol Mol. Plant Pathol. 56:1-11CrossRefGoogle Scholar
  4. Bardin M, Nicot PC, Normand P, Lemaire JM (1997) Virulence variation and DNA polymorphism in Sphaerotheca fuliginea, causal agent of powdery mildew of cucurbits. Eur J Plant Pathol 103:545-554Google Scholar
  5. Bevan JR, Clarke DD, Crute IR (1993a) Resistance to Erysiphe fischeri in two populations of Senecio vulgaris. Plant Pathol 42:636-646Google Scholar
  6. Bevan JR, Crute IR, Clarke DD (1993b) Variation for virulence in Erysiphe fischeri from Senecio vulgaris. Plant Pathol 42:622-635CrossRefGoogle Scholar
  7. Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci USA102:3135-3140Google Scholar
  8. Bieri S, Mauch S, Shen QH, Peart J, Devoto A, Casais C, Ceron F, Schulze S, Steinbiss HH, Shirasu K, Schulze- Lefert (2004) RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 16:3480-3495PubMedCrossRefGoogle Scholar
  9. Both M, Csukai M, Stumpf MPH, Spanu PD (2005a) Gene expression profiles of Blumeria graminis indicate dynamic changes to primary metabolism during development of an obligate biotrophic pathogen. Plant Cell 17:2107-2122PubMedCrossRefGoogle Scholar
  10. Both M, Eckert SE, Csukai M, Müller E, Dimopoulos G, Spanu PD (2005b) Transcript profiles of Blumeria graminis development during infection reveal a cluster of genes that are potential virulence determinants. Mol Plant-Microbe Interact 18:125-133PubMedCrossRefGoogle Scholar
  11. Boyd LA, Smith, PH, Foster EM, Brown JKM (1995) The effects of allelic variation at the MLA resistance locus in barley on the early development of Erysiphe- graminis f. sp. hordei and host responses. Plant J 7:959-968CrossRefGoogle Scholar
  12. Braun U, Cook RTA, Inman AJ, Shin, HD (2002) The taxonomy of the powdery mildew fungi. In: Belanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS, St Paul, pp 13-55Google Scholar
  13. Brian PW (1967) Obligate parasitism in fungi. Proc R Soc Lond B Biol Sci 168:101-118PubMedCrossRefGoogle Scholar
  14. Brown JKM (1994) Chance and selection in the evolution of barley mildew. Trends Microbiol 2:470-475PubMedCrossRefGoogle Scholar
  15. Brown JKM (2002) Comparative genetics of avirulence and fungicide resistance in the powdery mildew fungi. In: Belanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS, St Paul, pp 56-65Google Scholar
  16. Brown JKM, Jessop AC (1995). Genetics of avirulences in Ery-siphe graminis f.sp. hordei. Plant Pathol 44:1039-1049CrossRefGoogle Scholar
  17. Brown JKM, Simpson CG (1994) Genetic analysis of DNA fingerprints and virulences in Erysiphe graminis f.sp. hordei. Curr Genet 26:172-178.PubMedCrossRefGoogle Scholar
  18. Brown JKM, LeBoulaire S, Evans N (1996) Genetics of responses to morpholine-type fungicides and of aviru- lences in Erysiphe graminis f.sp. hordei. Eur J Plant Pathol 102:479-490CrossRefGoogle Scholar
  19. Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, vanDaelen R, vanderLee T, Dier- gaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, SchulzeLefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695-705PubMedCrossRefGoogle Scholar
  20. Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, vanDaelen R, vanderLee T, Dier- gaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, SchulzeLefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695-705Google Scholar
  21. Bushnell WR (1972) Physiology of fungal haustoria. Annu Rev Phytopathol 10:151-176CrossRefGoogle Scholar
  22. Bushnell WR (1981) Incompatibility conditioned by the Mla gene in powdery mildew of barley: the halt in cytoplasmic streaming. Phytopathology 71:1062-1066CrossRefGoogle Scholar
  23. Caffier V, Laurens F (2005) Breakdown of Pl2, a major gene of resistance to apple powdery mildew, in a French experimental orchard. Plant Pathol 54:116-124CrossRefGoogle Scholar
  24. Caffier V, de Vallavieille-Pope C, Brown JKM (1996) Segregation of avirulences and genetic basis of infection types in Erysiphe graminis f.sp. hordei. Phytopathology 86:1112-1121CrossRefGoogle Scholar
  25. Caldo RA, Nettleton D, Peng JQ, Wise RP (2006) Stage-specific suppression of basal defense discriminates barley plants containing fast- and delayed-acting Mla powdery mildew resistance alleles. Mol Plant-Microbe Interact 19:939-947PubMedCrossRefGoogle Scholar
  26. Carver TLW, Kunoh H, Thomas BJ, Nicholson RL (1999) Release and visualisation of the extracellular matrix of conidia of Blumeria graminis. Mycol Res 103:547-560CrossRefGoogle Scholar
  27. Celio GJ, Mims CW, Richardson EA (2004) Ultrastructure and immunocytochemistry of the host-pathogen interface in poinsettia leaves infected with powdery mildew. Can J Bot 82:421-429CrossRefGoogle Scholar
  28. Cherewick WJ (1944) Studies on the biology of Erysiphe graminis DC. Can J Res 22:52-86CrossRefGoogle Scholar
  29. Christiansen SK, Giese H (1990) Genetic analysis of the obligate parasitic barley powdery mildew fungus based on RFLP and virulence loci. Theor Appl Genet 79:705-712CrossRefGoogle Scholar
  30. Clarke DD (1997) The genetic structure of natural pathosystems. In: Crute IR, Holub EB, Burdon JJ (eds)The gene-for-gene relationship in plant-parasite interactions. CAB International, Wallingford, pp 231-243Google Scholar
  31. Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu J, Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein- mediated disease resistance at the plant cell wall. Nature 425:973-977PubMedCrossRefGoogle Scholar
  32. Colson B (1938) The cytology and development of Phyllactinia corylea. Lev. Ann Bot 2:381-402Google Scholar
  33. Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P, Somerville SC, Panstruga R (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Genet 38:616-720CrossRefGoogle Scholar
  34. Crute IR, Holub EB, Burdon JJ (eds) (1997) The gene-forgene relationship in plant-parasite interactions. CAB International, Wallingford Dekhuijzen HM (1976) Endogenous cytokinins in healthy and diseased plants. In: Heitefuss R, Williams PH (eds) Physiological plant pathology, encyclopedia of plant physiology, new series, vol 4. Springer, Heidelberg, pp 526-559Google Scholar
  35. Edwards HH (2002) Development of primary germ tubes by conidia of Blumeria graminis f.sp. hordei on leaf epidermal cells of Hordeum vulgare. Can J Bot 80:1121-1125CrossRefGoogle Scholar
  36. Elliott C, Zhou F, Spielmeyer W, Panstruga R, Schulze-Lefert P (2002) Functional conservation of wheat and rice Mlo orthologs in plant defense modulation to powdery mildew. Mol Plant-Microbe Interact 15:1069-1077PubMedCrossRefGoogle Scholar
  37. Flor HH (1955) Host-parasite interaction in flax rust - its genetics and other implications. Phytopathology 45:680685Google Scholar
  38. Freialdenhoven A, Peterhansel C, Kurth J, Kreuzaler F, Schulze-Lefert P (1996) Identification of genes required for the function of non-race-specific mlo resistance to powdery mildew in barley. Plant Cell 8:5-14PubMedCrossRefGoogle Scholar
  39. Gil F, Gay JL (1977) Ultrastructural and physiological properties of the host interfacial components of haustoria of Erysiphe pisi in vivo and in vitro. Physiol Plant Pathol 10:1-12CrossRefGoogle Scholar
  40. Giles PF, Soanes DM, Talbot NJ (2003) A relational database for the discovery of genes encoding amino acid biosynthetic enzymes in pathogenic fungi. Compar Funct Genomics 4:4-15CrossRefGoogle Scholar
  41. Görg R, Hollricher K, Schulze-Lefert P (1993) Functional analysis and RFLP-mediated mapping of the Mlg resistance locus in barley. Plant J 3:857-866CrossRefGoogle Scholar
  42. Green JR, Carver TLW, Gurr SJ (2002) The formation and function of infection and feeding structures. In: Belanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) In powdery mildews: a comprehensive treatise. APS, St Paul, pp 66-82Google Scholar
  43. Gregersen PL, Thordal-Christensen H, Forster H, Collinge DB (1997) Differential gene transcript accumulation in barley leaf epidermis and mesophyll in response to attack by Blumeria graminis f.sp. hordei (syn. Erysiphe graminis f.sp. hordei). Physiol Mol Plant Pathol 51:85-97CrossRefGoogle Scholar
  44. Hahn M, Mendgen K (1997) Characterization of in planta induced rust genes isolated from a haustorium-specific cDNA library. Mol Plant--Microbe Interact 10:427-437Google Scholar
  45. Halterman DA, Wise RP (2004) A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. Plant J 38:215-226PubMedCrossRefGoogle Scholar
  46. Halterman DA, Wei FS, Wise RP (2003) Powdery mildew induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. Plant Physiol 131:558-567PubMedCrossRefGoogle Scholar
  47. Harper RA (1905) Sexual reproduction and the organization of the nucleus in certain mildews. Carnegie Inst Wash 37:1-105Google Scholar
  48. Harry IB, Clarke DD (1986) Race-specific resistance in groundsel (Senecio vulgaris) to the powdery mildew Erysiphe fischeri. New Phytolol 103:167-175CrossRefGoogle Scholar
  49. Hein I, Pacak MB, Hrubikova K, Williamson S, Dinesen M, Soenderby IE, Sundar S, Jarmolowski A, Shirasu K, Lacomme C (2005)Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley Plant Physiol 138:2155-2164Google Scholar
  50. Hirata K (1967) Notes on the haustoria, hyphae and conidia of the powdery mildew fungus on barley Erysiphe graminis f.sp. hordei. Mem Fac Agric Niigata Univ 6:207-259Google Scholar
  51. Hosoya K, Narisawa K, Pitrat M, Ezura H (1999) Race identification in powdery mildew (Sphaerotheca fuliginea) on melon (Cucumis melo) in Japan. Plant Breed 118:259-262CrossRefGoogle Scholar
  52. Hovm0ller MS, Caffier V, Jalli M, Andersen O, Besenhofer G, Czembor JH, Dreiseitl A, Felsenstein F, Fleck A, Hein- rics F, Jonsson R, Limpert E, Mercer P, Plesnik S, Rashal I, Skinnes H, Slater S, Vronska O (2000) The European barley powdery mildew virulence survey and disease nursery 1993-1999. Agronomie 20:729-743Google Scholar
  53. Hsam SLK, Zeller FJ (2002) Breeding for powdery mildew resistance in common wheat (Triticum aestivum L.). In: Belanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) In powdery mildews: a comprehensive treatise. APS, St Paul, pp 219-238Google Scholar
  54. Huang XQ, Roder MS (2004) Molecular mapping of powdery mildew resistance genes in wheat: a review. Euphytica 137:203-222CrossRefGoogle Scholar
  55. Jakupovic M, Heintz M, Reichmann P, Mendgen K, Hahn M (2006) Microarray analysis of expressed sequence tags from haustoria of the rust fungus Uromyces fabae. Fungal Genet Biol 43:8-19PubMedCrossRefGoogle Scholar
  56. Jarosch B, Kogel KH, Schaffrath U (1999) The ambivalence of the barley Mlo locus: mutations conferring resistance against powdery mildew (Blumeria graminis f.sp. hordei) enhance susceptibility to the rice blast fungus Magnaporthe grisea. Mol Plant-Microbe Interact 12:508-514CrossRefGoogle Scholar
  57. Jarvis WR, Gubler WD, Grove GG (2002) Epidemiology of powdery mildews in agricultural systems. In: Belanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS, St Paul, pp 169-199Google Scholar
  58. Jensen J, Jensen HP, J0rgensen JH (1995) Linkage studies of barley powdery mildew virulence loci. Hereditas 122:197-209Google Scholar
  59. J0rgensen JH (1988) Erysiphe graminis, powdery mildew of cereals and grasses. Adv Plant Pathol 6:135-157Google Scholar
  60. J0rgensen JH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141-152 J0rgensen JH (1994) Genetics of powdery mildew resistance in barley. Crit Rev Plant Sci 13:97-119Google Scholar
  61. Kim MC, Panstruga R, Elliott C, Müller J, Devoto A, Yoon HW, Park H, Cho MJ, Schulze-Lefert P (2002) Calmodulin interacts with MLO to regulate defence against mildew in barley. Nature 416:447-450PubMedCrossRefGoogle Scholar
  62. Kobayashi J, Kobayashi I, Funaki Y, Fujimoto S, Take- moto T, Kunoh H (1997) Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. Plant J 11:525-537Google Scholar
  63. Koh S, André A, Edwards H, Ehrhardt D, Somerville S (2005) Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections Plant J 44:516-529Google Scholar
  64. Kunoh H, Hayashimoto A, Harui M, Ishizaki H (1985) Induced susceptibility and enhanced resistance at the cellular level in barley coleoptiles. I. The significance of timing of fungal invasion. Physiol Plant Pathol 27:43-54Google Scholar
  65. Kunoh H, Kuroda K, Hayashimoto A, Ishizaki H (1986) Induced susceptibility and enhanced resistance at the cellular level in barley coleoptiles. II. The timing and localization of induced susceptibility in a single cole- optile cell and its transfer to an adjacent cell. Can J Bot 64:889-895Google Scholar
  66. Li AL, Wang ML, Zhou RH, Kong XY, Huo NX, Wang WS, Jia JZ (2005) Comparative analysis of early H2O2 accumulation in compatible and incompatible wheat-powdery mildew interactions. Plant Pathol 54:308-316CrossRefGoogle Scholar
  67. Lipka V, Dittgen J, Bednarek P, Bhat RA, Stein M, Landtag J, Brandt W, Scheel D, Llorente F, Molina A, Wiermer M, Parker J, Somerville SC, Schulze-Lefert P (2005) Pre- and post-invasion defenses both contribute to non-host resistance in Arabidopsis. Science 310:1180-1183PubMedCrossRefGoogle Scholar
  68. Lyngkj^r MT, Carver TLW (1999) Induced accessibility and inaccessibility to Blumeria graminis f.sp. hordei in barley epidermal cells attacked by a compatible isolate. Physiol Mol Plant Pathol 55:151-162Google Scholar
  69. Lyngkj^r MT, Carver TLW, Zeyen RJ (2001) Virulent Blumeria graminis infection induces penetration susceptibility and suppresses race-specifc hypersensitive resistance against avirulent attack in Mlal-barley. Physiol Mol Plant Pathol 59:243-256Google Scholar
  70. Mackey D, Holt BF III, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:753-754CrossRefGoogle Scholar
  71. Manners JM, Gay JL (1983) The host-parasite interface and nutrient transfer in biotrophic parasitism. In: Callow JA (ed) Biochemical plant pathology. Wiley, Chichester, pp 163-195Google Scholar
  72. McIntosh RA, Brown GN (1997) Anticipatory breeding for resistance to rust diseases in wheat. Annu Rev Phytopathol 35:311-326 Moseman JG (1959) Host-pathogen interaction of the genes for resistance in Hordeum vulgare and for pathogenicity in Erysiphe graminis f.sp. hordei. Phytopathology 49:469-472Google Scholar
  73. Moseman JG, Scharen AL, Greely LW (1964) Propagation of Erysiphe graminis f.sp. tritici on barley and Erysiphe graminis f. sp hordei on wheat. Phytopathology 55:92-96Google Scholar
  74. Olesen KL, Carver TLW, Lyngkjaer MF (2003) Fungal suppression of resistance against inappropriate Blumeria graminis formae speciales in barley, oat and wheat. Physiol Mol Plant Pathol 62:37-50CrossRefGoogle Scholar
  75. Opalski KS, Schultheiss H, Kogel KH, Huckelhoven R (2005) The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei. Plant J 41:291-303PubMedCrossRefGoogle Scholar
  76. Pearson RC, Gadoury DM (1987) Cleistothecia, the source of primary inoculum for grape powdery mildew in New York. Phytopathology 77:1509-1579CrossRefGoogle Scholar
  77. Pedersen C, Rasmussen SW, Giese H (2002). A genetic map of Blumeria graminis based on functional genes, avir- ulence genes, and molecular markers. Fungal Genet Biol 35:235-246PubMedCrossRefGoogle Scholar
  78. Perez-Garcia A, Mignorance E, Rivera ME, Del Pin D, Romero D, Tores JA, De Vicente A (2006) Long-term preservation of Podosphaera fusca using silica gel. J Phytopathol 154:190-192CrossRefGoogle Scholar
  79. Piffanelli P, Ramsay L, Waugh R, Benabdelmouna A, D'Hont A, Hollricher K, Jorgensen JH, Schulze-Lefert P, Panstruga R (2006) A barley cultivation-associated polymorphism conveys resistance to powdery mildew. Nature 430:887-891CrossRefGoogle Scholar
  80. Powers HR, San do WJ (1960) Genetic control of the host-parasite relationship in wheat powdery mildew. Phytopathology 50:454-457Google Scholar
  81. Prats E, Mur LAJ, Sanderson R, Carver TLW (2005) Nitric oxide contributes both to papilla-based resistance and the hypersensitive response in barley attacked by Blumeria graminis f.sp. hordei. Mol Plant Pathol 6:65-78PubMedCrossRefGoogle Scholar
  82. Prats E, Gay A, Mur L, Thomas B, Carver T (2006) Stomatal lock-open, a consequence of epidermal cell death, follows transient suppression of stomatal opening in barley attacked by Blumeria graminis. J Exp Bot 57:2211-2226PubMedCrossRefGoogle Scholar
  83. Ridout CJ, Skamnioti P, Porritt O, Sacristan S, Jones JDG, Brown JKM (2006) Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. Plant Cell 18:24022414CrossRefGoogle Scholar
  84. Robinson HL, Ridout CJ, Sierotzki H, Gisi U, Brown JKM (2002) Isogamous, hermaphroditic inheritance of mitochondrion-encoded resistance to Qo inhibitor fungicides in Blumeria graminis f. sp. tritici. Fungal Genet Biol 36:98-106PubMedCrossRefGoogle Scholar
  85. Schiffer R, Görg R, Jarosch B, Beckhove U, Bahrenberg G, Kogel KH, Schulze-Lefert P (1997) Tissue dependence and differential cordycepin sensitivity of race-specific resistance responses in the barley powdery mildew interaction. Mol Plant-Microbe Interact 10:830-839CrossRefGoogle Scholar
  86. Shen QH, Zhou FS, Bieri S, Haizel T, Shirasu K, Schulze- Lefert P (2003) Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15:732-744PubMedCrossRefGoogle Scholar
  87. Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P (2007) Nuclear activity of MLA immune receptors links iso- late-specific and basal disease-resistance responses. Science 315:1098-1103PubMedCrossRefGoogle Scholar
  88. Shirasu K, Schulze-Lefert P (2000) Regulators of cell death in disease resistance. Plant Mol Biol 44:371-385PubMedCrossRefGoogle Scholar
  89. Soanes DM, Talbot NJ (2006) Comparative genomic analysis of phytopathogenic fungi using expressed sequence tag (EST) collections. Mol Plant Pathol 7:61-70PubMedCrossRefGoogle Scholar
  90. Soanes DM, Skinner W, Keon J, Hargreaves J, Talbot NJ (2002) Genomics of phytopathogenic fungi and the development of bioinformatic resources. Mol Plant-Microbe Interact 15:421-427PubMedCrossRefGoogle Scholar
  91. Stein M, Dittgen J, Sanchez-Rodriguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731-746PubMedCrossRefGoogle Scholar
  92. Struck C, Ernst M, Hahn M (2002) Characterization of a developmentally regulated amino acid transporter (AAT1p) of the rust fungus Uromyces fabae. Mol Plant Pathol 3:23-30PubMedCrossRefGoogle Scholar
  93. Thomas SW, Rasmussen SW, Glaring MA, Rouster JA, Christiansen SK, Oliver RP (2001) Gene identification in the obligate fungal pathogen Blumeria graminis by expressed sequence tag analysis. Fungal Genet Biol 33:195-211PubMedCrossRefGoogle Scholar
  94. Thomas SW, Glaring MA, Rasmussen SW, Kinane JT, Oliver RP (2002) Transcript profiling in the barley mildew pathogen Blumeria graminis by serial analysis of gene expression (SAGE). Mol Plant-Microbe Interact 15:847-856PubMedCrossRefGoogle Scholar
  95. Thompson JN, Burdon JJ (1992) Gene-for-gene coevolution between plants and parasites. Nature 360:121-125CrossRefGoogle Scholar
  96. Thordal-Christensen H, Zhang ZG, Wei YD, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187-1194CrossRefGoogle Scholar
  97. Tiwari KR, Penner GA, Warkentin TD, Rashid KY (1997) Pathogenic variation in Erysiphe pisi, the causal organism of powdery mildew of pea. Can J Plant Pathol 19:267-271CrossRefGoogle Scholar
  98. Vanacker H, Carver TLW, Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hypersensitive response in the barley-powdery mildew interaction. Plant Physiol 123:1289-1300PubMedCrossRefGoogle Scholar
  99. Voegele RT, Struck C, Hahn M, Mendgen K (2001) The role of haustoria in sugar supply during infection of broad bean by the rust fungus Uromyces fabae. Proc Natl Acad Sci USA 98:8133-8138PubMedCrossRefGoogle Scholar
  100. Voegele RT, Wirsel S, Möll U, Lechner M, Mendgen K (2006) Cloning and Characterization of a novel invertase from the obligate biotroph Uromyces fabae and analysis of expression patterns of host and pathogen invertases in the course of infection. Mol Plant-Microbe Interact 19:625-634PubMedCrossRefGoogle Scholar
  101. Walters DR, McRoberts N (2006) Plants and biotrophs: a pivotal role for cytokinins. Trends Plant Sci 11:581-586PubMedCrossRefGoogle Scholar
  102. Wolter M, Hollricher K, Salamini F, Schulze-Lefert P (1993) The Mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defense mimic phenotype. Mol Gen Genet 239:122-128PubMedGoogle Scholar
  103. Xiao S, Ellwood S, Findlay K, Oliver RP, Turner JG (1997) Characterization of three loci controlling resistance of Arabidopsis thaliana accession Ms-0 to two powdery mildew diseases. Plant J 12:757-768PubMedCrossRefGoogle Scholar
  104. Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118-120PubMedCrossRefGoogle Scholar
  105. Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528-538PubMedCrossRefGoogle Scholar
  106. Yahiaoui N, Brunner S, Keller B (2006) Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J 47:85-98PubMedCrossRefGoogle Scholar
  107. Yu D (2000) Wheat powdery mildew in central China. Dissertation, Univerity of WageningenGoogle Scholar
  108. Yun BW, Atkinson HA, Gaborit C, Greenland A, Read ND, Pallas JA, Loake GJ (2003) Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew Plant J 34:768-777Google Scholar
  109. Zavaleta-Mancera H, Franklin K, Ougham H, Thomas H, Scott I (1999) Regreening of senescent Nicotiana leaves. I. Reappearance of NADPH-protochlorophyllide oxidoreductase and light harvesting chlorophyll a/b-binding protein. J Exp Bot 50:1677-1682Google Scholar
  110. Zeyen RJ, Carver TLW, Lyngkjaer MF (2002) Epidermal cell papillae. In: Belanger RR, Bushnell WR, Dik AJ, CarverGoogle Scholar
  111. TLW(eds) The powdery mildews: a comprehensive treatise. APS, St Paul, pp 107-125Google Scholar
  112. Zhang Z, Henderson C, Perfect E, Carver TLW, Thomas BJ, Skamnioti P, Gurr SJ (2005) Of genes and genomes, needles and haystacks: Blumeria graminis and functionality. Mol Plant Pathol 6:561-575PubMedCrossRefGoogle Scholar
  113. Zhou FS, Kurth JC, Wei FS, Elliott C, Vale G, Yahiaoui N, Keller B, Somerville S, Wise R, Schulze-Lefert P (2001) Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signalling pathway. Plant Cell 13:337-350PubMedCrossRefGoogle Scholar
  114. Zhu ZD, Zhou RH, Kong XY, Dong YC, Jia JZ (2005) Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carth- licum accession PS5 into common wheat. Genome 48:585-590PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.John Innes CentreNorwich Research ParkNorwichUK

Personalised recommendations