Workshop on Petri Nets and Graph Transformations

  • Paolo Baldan
  • Barbara König
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5214)


The Workshop on Petri Nets and Graph Transformations, which is currently at its third edition, is focused on the mutual relationship between two prominent specification formalisms for concurrency and distribution, namely Petri nets and graph transformation systems. It belongs to folklore that Petri nets can be seen as rewriting systems over (multi)sets, the rewriting rules being the transitions, and, as such, they can be seen as special graph transformation systems, acting over labelled discrete graphs. The basic notions of Petri nets such as marking, enabling, firing, steps and step sequences can be naturally “translated” to corresponding notions of graph transformation systems. Due to this close correspondence there has been a mutual influence between the two fields, which has lead to a fruitful cross-fertilisation.


Model Transformation Graph Transformation Graph Grammar State Model Check Graph Transformation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badouel, E., Llorens, M., Oliver, J.: Modeling concurrent systems: Reconfigurable nets. In: Arabnia, H.R., Mun, Y. (eds.) Proceedings of PDPTA 2003, vol. 4, pp. 1568–1574. CSREA Press (2003)Google Scholar
  2. 2.
    Baldan, P.: Modelling concurrent computations: from contextual Petri nets to graph grammars. PhD thesis, Department of Computer Science, University of Pisa, Available as technical report n. TD-1/00 (2000)Google Scholar
  3. 3.
    Baldan, P., Corradini, A., Ehrig, H., Löwe, M., Montanari, U., Rossi, F.: Concurrent Semantics of Algebraic Graph Transformation Systems. In: Ehrig, et al. (eds.) [11]Google Scholar
  4. 4.
    Baldan, P., Corradini, A., Heindel, T., König, B., Sobociński, P.: Processes for adhesive rewriting systems. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 202–216. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Baldan, P., Corradini, A., König, B.: A static analysis technique for graph transformation systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 381–395. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Bardohl, R., Ermel, C.: Scenario animation for visual behavior models: A generic approach. Software and System Modeling 3(2), 164–177 (2004)CrossRefGoogle Scholar
  7. 7.
    Dottí, F.L., Foss, L., Ribeiro, L., Santos, O.M.: Verification of distributed object-based systems. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 261–275. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Ehrig, H., Gajewsky, M., Parisi-Presicce, F.: Replacement systems with applications to algebraic specifications and petri nets. In: Ehrig, et al. (eds.) [11]Google Scholar
  9. 9.
    Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F.: Parallelism and concurrency in High-Level Replacement Systems. Mathematical Structures in Computer Science 1, 361–404 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement categories and systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Ehrig, H., Kreowski, J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation, Concurrency, Parallelism and Distribution, vol. Volume III. World Scientific, Singapore (1999)Google Scholar
  12. 12.
    Ermel, C., Ehrig, K.: View transformation in visual environments applied to petri nets. In: Ehrig, H., Padberg, J., Rozenberg, G. (eds.) Proceedings of PNGT’04. ENTCS, vol. 127, pp. 61–86. Elsevier, Amsterdam (2005)Google Scholar
  13. 13.
    Janssens, D.: ESM systems and the composition of their computations. In: Ehrig, H., Schneider, H.-J. (eds.) Dagstuhl Seminar 1993. LNCS, vol. 776, pp. 203–217. Springer, Heidelberg (1994)Google Scholar
  14. 14.
    Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Meseguer, J., Montanari, U., Sassone, V.: On the semantics of Place/Transition Petri nets. Mathematical Structures in Computer Science 7, 359–397 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Milner, R.: Bigraphs for petri nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 686–701. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Padberg, J., Ehrig, H., Ribeiro, L.: High level replacement systems applied to algebraic high level net transformation systems. Mathematical Structures in Computer Science 5(2), 217–256 (1995)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Padberg, J., Enders, B.: Rule invariants in graph transformation systems for analyzing safety-critical systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 334–350. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Rensink, A.: Explicit state model checking for graph grammars. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 114–132. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Sassone, V., Sobocinski, P.: A congruence for Petri nets. In: Proceedings of PNGT 2004. ENTCS, vol. 127, pp. 107–120. Elsevier, Amsterdam (2005)Google Scholar
  21. 21.
    Sobociński, P.: Reversing graph transformations. In: Proceedings of PNGT 2006. Electronic Communications of the EASST, vol. 2 (2006)Google Scholar
  22. 22.
    Varró, D., Varró-Gyapay, S., Ehrig, H., Prange, U., Taentzer, G.: Termination analysis of model transformations by Petri nets. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 260–274. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Winskel, G.: Event Structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Paolo Baldan
    • 1
  • Barbara König
    • 2
  1. 1.Dipartimento di Matematica Pura e ApplicataUniversità di PadovaItaly
  2. 2.Abteilung für Informatik und Angewandte KognitionswissenschaftUniversität Duisburg-EssenGermany

Personalised recommendations