On the Recognizability of Arrow and Graph Languages

  • H. J. Sander Bruggink
  • Barbara König
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5214)


In this paper we give a category-based characterization of recognizability. A recognizable subset of arrows is defined via a functor into the category of relations on sets, which can be seen as a straightforward generalization of a finite automaton. In the second part of the paper we apply the theory to graphs, and we show that our approach is a generalization of Courcelle’s recognizable graph languages.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Bouderon, M., Courcelle, B.: Graph expressions and graph rewritings. Mathematical Systems Theory 20, 81–127 (1987)Google Scholar
  3. 3.
    Bruggink, H.J.S.: Towards a systematic method for proving termination of graph transformation systems (work-in-progress paper). In: Proc. of GT-VC 2007 (Graph Transformation for Verification and Concurrency) (2007)Google Scholar
  4. 4.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation—part I: Basic concepts and double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, Foundations, ch. 3, vol. 1, World Scientific, Singapore (1997)Google Scholar
  5. 5.
    Courcelle, B.: The monadic second-order logic of graphs I. recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Courcelle, B.: Graph grammars, monadic second-order logic and the theory of graph minors. In: Graph Structure Theory, pp. 565–590. American Mathematical Society (1991)Google Scholar
  7. 7.
    Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, Foundations, ch. 5, vol. 1. World Scientific, Singapore (1997)Google Scholar
  8. 8.
    Courcelle, B., Lagergren, J.: Equivalent definitions of recognizability for sets of graphs of bounded tree-width. Mathematical Structures in Computer Science 6(2), 141–165 (1996)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Courcelle, B., Weil, P.: The recognizability of sets of graphs is a robust property. Theoretical Computer Science 342(2–3), 173–228 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Heidelberg (2006)MATHGoogle Scholar
  11. 11.
    Geser, A., Hofbauer, D., Waldmann, J.: Match-bounded string rewriting systems. Applicable Algebra in Engineering, Communication and Computing 15(3–4), 149–171 (2004)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Griffing, G.: Composition-representative subsets. Theory and Applications of Categories 11(19), 420–437 (2003)MATHMathSciNetGoogle Scholar
  13. 13.
    Habel, A., Kreowski, H.-J., Lautemann, C.: A comparison of compatible, finite and inductive graph properties. Theoretical Computer Science 110(1), 145–168 (1993)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kuncak, V., Rinard, M.C.: Existential heap abstraction entailment is undecidable. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 418–438. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO – Theoretical Informatics and Applications 39(3) (2005)Google Scholar
  16. 16.
    Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)MATHGoogle Scholar
  17. 17.
    Mezei, J., Wright, J.B.: Algebraic automata and context-free sets. Information and Control 11, 3–29 (1967)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Potthoff, A., Seibert, S., Thomas, W.: Nondeterminism versus determinism of finite automata over directed acyclic graphs. Bulletin of the Belgian Mathematical Society 1, 285–298 (1994)MATHMathSciNetGoogle Scholar
  19. 19.
    Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Generic commutative separable algebras and cospans of graphs. Theory and applications of categories 15(6), 164–177 (2005)MATHMathSciNetGoogle Scholar
  20. 20.
    Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Calculating colimits compositionally (2007)Google Scholar
  21. 21.
    Sassone, V., Sobociński, P.: Reactive systems over cospans. In: Proc. of LICS 2005, pp. 311–320. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  22. 22.
    Urvoy, T.: Abstract families of graphs. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 381–392. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Witt, K.-U.: Finite graph-acceptors and regular graph-languages. Information and Control 50(3), 242–258 (1981)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • H. J. Sander Bruggink
    • 1
  • Barbara König
    • 1
  1. 1.Universität Duisburg-Essen 

Personalised recommendations