On the Recognizability of Arrow and Graph Languages

  • H. J. Sander Bruggink
  • Barbara König
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5214)

Abstract

In this paper we give a category-based characterization of recognizability. A recognizable subset of arrows is defined via a functor into the category of relations on sets, which can be seen as a straightforward generalization of a finite automaton. In the second part of the paper we apply the theory to graphs, and we show that our approach is a generalization of Courcelle’s recognizable graph languages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Bouderon, M., Courcelle, B.: Graph expressions and graph rewritings. Mathematical Systems Theory 20, 81–127 (1987)Google Scholar
  3. 3.
    Bruggink, H.J.S.: Towards a systematic method for proving termination of graph transformation systems (work-in-progress paper). In: Proc. of GT-VC 2007 (Graph Transformation for Verification and Concurrency) (2007)Google Scholar
  4. 4.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation—part I: Basic concepts and double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, Foundations, ch. 3, vol. 1, World Scientific, Singapore (1997)Google Scholar
  5. 5.
    Courcelle, B.: The monadic second-order logic of graphs I. recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Courcelle, B.: Graph grammars, monadic second-order logic and the theory of graph minors. In: Graph Structure Theory, pp. 565–590. American Mathematical Society (1991)Google Scholar
  7. 7.
    Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, Foundations, ch. 5, vol. 1. World Scientific, Singapore (1997)Google Scholar
  8. 8.
    Courcelle, B., Lagergren, J.: Equivalent definitions of recognizability for sets of graphs of bounded tree-width. Mathematical Structures in Computer Science 6(2), 141–165 (1996)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Courcelle, B., Weil, P.: The recognizability of sets of graphs is a robust property. Theoretical Computer Science 342(2–3), 173–228 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Heidelberg (2006)MATHGoogle Scholar
  11. 11.
    Geser, A., Hofbauer, D., Waldmann, J.: Match-bounded string rewriting systems. Applicable Algebra in Engineering, Communication and Computing 15(3–4), 149–171 (2004)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Griffing, G.: Composition-representative subsets. Theory and Applications of Categories 11(19), 420–437 (2003)MATHMathSciNetGoogle Scholar
  13. 13.
    Habel, A., Kreowski, H.-J., Lautemann, C.: A comparison of compatible, finite and inductive graph properties. Theoretical Computer Science 110(1), 145–168 (1993)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kuncak, V., Rinard, M.C.: Existential heap abstraction entailment is undecidable. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 418–438. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO – Theoretical Informatics and Applications 39(3) (2005)Google Scholar
  16. 16.
    Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)MATHGoogle Scholar
  17. 17.
    Mezei, J., Wright, J.B.: Algebraic automata and context-free sets. Information and Control 11, 3–29 (1967)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Potthoff, A., Seibert, S., Thomas, W.: Nondeterminism versus determinism of finite automata over directed acyclic graphs. Bulletin of the Belgian Mathematical Society 1, 285–298 (1994)MATHMathSciNetGoogle Scholar
  19. 19.
    Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Generic commutative separable algebras and cospans of graphs. Theory and applications of categories 15(6), 164–177 (2005)MATHMathSciNetGoogle Scholar
  20. 20.
    Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Calculating colimits compositionally (2007)Google Scholar
  21. 21.
    Sassone, V., Sobociński, P.: Reactive systems over cospans. In: Proc. of LICS 2005, pp. 311–320. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  22. 22.
    Urvoy, T.: Abstract families of graphs. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 381–392. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Witt, K.-U.: Finite graph-acceptors and regular graph-languages. Information and Control 50(3), 242–258 (1981)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • H. J. Sander Bruggink
    • 1
  • Barbara König
    • 1
  1. 1.Universität Duisburg-Essen 

Personalised recommendations