Advertisement

A Modal-Logic Based Graph Abstraction

  • Jörg Bauer
  • Iovka Boneva
  • Marcos E. Kurbán
  • Arend Rensink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5214)

Abstract

Infinite or very large state spaces often prohibit the successful verification of graph transformation systems. Abstract graph transformation is an approach that tackles this problem by abstracting graphs to abstract graphs of bounded size and by lifting application of productions to abstract graphs. In this work, we present a new framework of abstractions unifying and generalising existing takes on abstract graph transformation. The precision of the abstraction can be adjusted according to the properties to be verified facilitating abstraction refinement. We present a modal logic defined on graphs, which is preserved and reflected by our abstractions. Finally, we demonstrate the usability of the framework by verifying a graph transformation model of a firewall.

Keywords

Modal Logic Graph Transformation Abstract Graph Logic Formula Canonical Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heckel, R.: Compositional verification of reactive systems specified by graph transformation. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 138–153. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant verification for systems with dynamic structural adaptation. In: ICSE. ACM Press, New York (2006)Google Scholar
  3. 3.
    Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modeling and verification of ad hoc routing protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Baldan, P., Corradini, A., König, B.: Verifying finite-state graph grammars: An unfolding-based approach. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    König, B., Kozioura, V.: Counterexample-guided abstraction refinement for the analysis of graph transformation systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Rensink, A., Distefano, D.: Abstract Graph Transformation. In: International Workshop on Software Verification and Validation (SVV). ENTCS (2005)Google Scholar
  7. 7.
    Bauer, J.: Analysis of Communication Topologies by Partner Abstraction. PhD thesis, Universität des Saarlandes (2006)Google Scholar
  8. 8.
    Bauer, J., Wilhelm, R.: Static analysis of dynamic communication systems by partner abstraction. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)Google Scholar
  10. 10.
    Rensink, A.: Canonical Graph Shapes. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 401–415. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Sagiv, M., Reps, T., Wilhelm, R.: Parametric Shape Analysis via 3-valued Logic. ACM Transactions on Programming Languages and Systems 24(3) (May 2002)Google Scholar
  12. 12.
    Bauer, J., Boneva, I., Rensink, A., Kurbán, M.E.: A modal-logic based graph abstraction, http://www7.in.tum.de/~joba/icgt08.pdf
  13. 13.
    Boneva, I., Rensink, A., Kurbán, M.E., Bauer, J.: Graph Abstraction and Abstract Graph Transformation. Technical report, University of Twente (2007)Google Scholar
  14. 14.
    Rossman, B.: Existential Positive Types and Preservation under Homomorphisms. In: 20th IEEE Symposium on Logic in Computer Science, pp. 467–476. CSP (2005)Google Scholar
  15. 15.
    Rensink, A.: The GROOVE Simulator: A Tool for State Space Generation. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jörg Bauer
    • 2
  • Iovka Boneva
    • 1
  • Marcos E. Kurbán
    • 3
  • Arend Rensink
    • 1
  1. 1.Institut für InformatikTechnical University of MunichGarching bei MünchenGermany
  2. 2.Formal Methods and Tools Group, EWI-INFUniversity of TwenteEnschedeThe Netherlands
  3. 3.Former member of Formal Methods and Tools Group, EWI-INFUniversity of Twente 

Personalised recommendations