Advertisement

Open Petri Nets: Non-deterministic Processes and Compositionality

  • Paolo Baldan
  • Andrea Corradini
  • Hartmut Ehrig
  • Barbara König
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5214)

Abstract

We introduce ranked open nets, a reactive extension of Petri nets which generalises a basic open net model introduced in a previous work by allowing for a refined notion of interface. The interface towards the external environment of a ranked open net is given by a subset of places designated as open and used for composition. Additionally, a bound on the number of connections which are allowed on an open place can be specified. We show that the non-deterministic process semantics is compositional with respect to the composition operation over ranked open nets, a result which did not hold for basic open nets.

Keywords

Forgetful Functor Open Port Open Place Process Amalgamation Strict Partial Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open Petri nets based on deterministic processes. Mathematical Structures in Computer Science 15(1), 1–35 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baldan, P., Corradini, A., Ehrig, H., Heckel, R., König, B.: Bisimilarity and behaviour-preserving reconfigurations of open Petri nets. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 126–142. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Basten, T.: In terms of nets: System design with Petri nets and process algebra. PhD thesis, Eindhoven University of Technology (1998)Google Scholar
  4. 4.
    Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: A behavioural congruence for web services. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 240–256. Springer, Heidelberg (2007)Google Scholar
  5. 5.
    Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae 26, 241–265 (1996)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Desel, J., Juhás, G., Neumair, C.: Finite unfoldings of unbounded Petri nets. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 157–176. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to graph rewriting. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 151–166. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Heckel, R.: Open Graph Transformation Systems: A New Approach to the Compositional Modelling of Concurrent and Reactive Systems. PhD thesis, Technische Universität Berlins (1998)Google Scholar
  9. 9.
    Kindler, E.: A compositional partial order semantics for Petri net components. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 235–252. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 164–174. Springer, Heidelberg (1993)Google Scholar
  11. 11.
    Milner, R.: Bigraphical reactive systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 16–35. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Nielsen, M., Priese, L., Sassone, V.: Characterizing Behavioural Congruences for Petri Nets. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 175–189. Springer, Heidelberg (1995)Google Scholar
  13. 13.
    Priese, L., Wimmel, H.: A uniform approach to true-concurrency and interleaving semantics for Petri nets. Theoretical Computer Science 206(1–2), 219–256 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1985)zbMATHGoogle Scholar
  15. 15.
    Sassone, V., Sobociński, P.: A congruence for Petri nets. In: Proc. of PNGT 2004. ENTCS, pp. 107–120. Elsevier, Amsterdam (2005)Google Scholar
  16. 16.
    van der Aalst, W.: The application of Petri nets to workflow management. The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)CrossRefGoogle Scholar
  17. 17.
    van der Aalst, W.: Interorganizational workflows: An approach based on message sequence charts and Petri nets. System Analysis and Modeling 34(3), 335–367 (1999)zbMATHGoogle Scholar
  18. 18.
    Zhang, G., Meng, F., Jiang, C., Pang, J.: Using Petri Net to Reason with Rule and OWL. In: Proc. of CIT 2006, IEEE Computer Society Press, Los Alamitos (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Paolo Baldan
    • 1
  • Andrea Corradini
    • 2
  • Hartmut Ehrig
    • 3
  • Barbara König
    • 4
  1. 1.Dipartimento di Matematica Pura e ApplicataUniversità di PadovaItaly
  2. 2.Dipartimento di InformaticaUniversità di PisaItaly
  3. 3.Institut für Softwaretechnik und Theoretische InformatikTechnische Universität BerlinGermany
  4. 4.Abteilung für Informatik und Angewandte KognitionswissenschaftUniversität Duisburg-EssenGermany

Personalised recommendations