Parallel and Sequential Independence for Borrowed Contexts

  • Filippo Bonchi
  • Fabio Gadducci
  • Tobias Heindel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5214)


Parallel and sequential independence are central concepts in the concurrency theory of the double pushout (dpo) approach to graph rewriting. However, so far those same notions were missing for dpo rewriting extended with borrowed contexts (dpobc), a formalism used for equipping dpo derivations with labels and introduced for modeling open systems that interact with the environment.

In this work we propose the definition of parallel and sequential independence for dpobc rewriting, and we prove that these novel notions allow generalizing the Church-Rosser and parallelism theorems holding for dpo rewriting. Most importantly, we show that the dpobc version of these theorems still guarantees the local confluence and the parallel execution of pairs of independent dpobc derivations.


Graph Transformation Open Node Parallel Production Parallel Derivation Parallelism Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to graph rewriting with borrowed contexts. Mathematical Structures in Computer Science 16(6), 1133–1163 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Leifer, J., Milner, R.: Deriving bisimulation congruences for reactive systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Baldan, P., König, B., Ehrig, H.: Composition and decomposition of DPO transformations with borrowed context. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozemberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 153–167. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Gadducci, F.: Term graph rewriting and the π-calculus. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 37–54. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Gadducci, F., Lluch-Lafuente, A.: Graphical encoding of a spatial logic for the π-calculus. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 209–225. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Bonchi, F., Gadducci, F., König, B.: Process bisimulation via a graphical encoding. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozemberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 168–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation I: Basic concepts and double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1, pp. 163–245. World Scientific, Singapore (1997)Google Scholar
  8. 8.
    Habel, A., Müller, J., Plump, D.: Double-pushout graph transformation revisited. Mathematical Structures in Computer Science 11, 637–688 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theoretical Informatics and Applications 39, 511–545 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S. (eds.) Handbook of Logic in Computer Science, vol. 4, pp. 1–148. Oxford University Press, Oxford (1992)Google Scholar
  11. 11.
    Sassone, V., Sobociński, P.: Reactive systems over cospans. In: Logic in Computer Science, pp. 311–320. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  12. 12.
    Sobociński, P.: Deriving bisimulation congruences from reduction systems. PhD thesis, BRICS, Department of Computer Science, University of Aaurhus (2004)Google Scholar
  13. 13.
    Rabinovich, A.M., Trakhtenbrot, B.A.: Behaviour structures and nets. Foundamenta Informatica 11(4), 357–404 (1988)zbMATHMathSciNetGoogle Scholar
  14. 14.
    van Glabbeek, R.J., Goltz, U.: Equivalence notions for concurrent systems and refinement of actions. In: Kreczmar, A., Mirkowska, G. (eds.) MFCS 1989. LNCS, vol. 379, pp. 237–248. Springer, Heidelberg (1989)Google Scholar
  15. 15.
    Baldan, P., Corradini, A., Ehrig, H., Heckel, R., König, B.: Bisimilarity and behaviour-preserving reconfiguration of open petri nets. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 126–142. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Nielsen, M., Priese, L., Sassone, V.: Characterizing behavioural congruences for Petri nets. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 175–189. Springer, Heidelberg (1995)Google Scholar
  17. 17.
    Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae 26, 241–265 (1996)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Filippo Bonchi
    • 1
  • Fabio Gadducci
    • 1
  • Tobias Heindel
    • 2
  1. 1.Dipartimento di InformaticaUniversità di Pisa 
  2. 2.Institut für Informatik und Interaktive SystemeUniversität Duisburg-Essen 

Personalised recommendations