Embedding and Confluence of Graph Transformations with Negative Application Conditions

  • Leen Lambers
  • Hartmut Ehrig
  • Ulrike Prange
  • Fernando Orejas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5214)

Abstract

The goal of this paper is the generalization of embedding and confluence results for graph transformation systems to transformation systems with negative application conditions (NACs). These conditions restrict the application of a rule by expressing that a specific structure must not be present before or after applying the rule to a certain context. Such a condition influences each rule application and transformation and therefore changes significantly the properties of the transformation system. This behavior modification is reflected by the generalization of the Embedding Theorem and the Critical Pair Lemma or Local Confluence Theorem, formulated already for graph transformation systems without negative application conditions. The results hold for adhesive high-level replacement systems with NACs and are formulated in this paper for the instantiation to double-pushout graph transformation systems with NACs. All constructions and results are explained on a running example.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovsky, T., Prange, U., Varro, D., Varro-Gyapay, S.: Model Transformation by Graph Transformation: A Comparative Study. In: Proc. Workshop Model Transformation in Practice, Montego Bay, Jamaica (October 2005)Google Scholar
  2. 2.
    Bottoni, P., Schürr, A., Taentzer, G.: Efficient Parsing of Visual Languages based on Critical Pair Analysis and Contextual Layered Graph Transformation. In: Proc.IEEE Symposium on Visual Languages, Long version available as technical report SI-2000-06, University of Rom (September 2000)Google Scholar
  3. 3.
    Huet, G.: Confluent reductions: Abstract properties and applications to term rewriting systems. JACM 27(4), 797–821 (1980)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Plump, D.: Hypergraph Rewriting: Critical Pairs and Undecidability of Confluence. In: Sleep, M., Plasmeijer, M., van Eekelen, M.C. (eds.) Term Graph Rewriting, pp. 201–214. Wiley, Chichester (1993)Google Scholar
  5. 5.
    Plump, D.: Confluence of graph transformation revisited. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 280–308. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2006)MATHGoogle Scholar
  7. 7.
    Lambers, L., Ehrig, H., Orejas, F., Prange, U.: Parallelism and Concurrency in Adhesive High-Level Replacement Systems with Negative Application Conditions. In: Ehrig, H., Pfalzgraf, J., Prange, U. (eds.) CC 2007. Elsevier, Amsterdam (to appear, 2008)Google Scholar
  8. 8.
    Lambers, L., Ehrig, H., Orejas, F.: Conflict Detection for Graph Transformation with Negative Application Conditions. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 61–76. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Lambers, L.: Adhesive high-level replacement systems with negative application conditions. Technical report, Technische Universität Berlin (2007), http://iv.tu-berlin.de/TechnBerichte/2007/2007-14.pdf
  10. 10.
    Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions  26, 287–313 (1996)Google Scholar
  11. 11.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic Approaches to Graph Transformation I: Basic Concepts and Double Pushout Approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, Foundations, vol. 1, pp. 163–245. World Scientific, Singapore (1997)Google Scholar
  12. 12.
    Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Validation of Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 446–456. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.H.: Constraints and application conditions: From graphs to high-level structures. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 287–303. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Leen Lambers
    • 1
  • Hartmut Ehrig
    • 1
  • Ulrike Prange
    • 1
  • Fernando Orejas
    • 2
  1. 1.Institute for Software Engineering and Theoretical InformaticsTechnical UniversityBerlinGermany
  2. 2.Department L.S.ITechnical University of CataloniaSpain

Personalised recommendations