Post-Hybridization Quality Measures for Oligos in Genome-Wide Microarray Experiments

  • Florian Battke
  • Carsten Müller-Tidow
  • Hubert Serve
  • Kay Nieselt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5251)


High-throughput microarray experiments produce vast amounts of data. Quality control methods for every step of such experiments are essential to ensure a high biological significance of the conclusions drawn from the data. This issue has been addressed for most steps of the typical microarray pipeline, but the quality of the oligonucleotide probes designed for microarrays has only been evaluated based on their a priori properties, such as sequence length or melting temperature predictions. We introduce new oligo quality measures that can be calculated using expression values collected in direct as well as indirect design experiments. Based on these measures, we propose combined oligo quality scores as a tool for assessing probe quality, optimizing array designs and data normalization strategies. We use simulated as well as biological data sets to evaluate these new quality scores. We show that the presented quality scores reliably identify high-quality probes. The set of best-quality probes converges with increasing number of arrays used for the calculation and the measures are robust with respect to the chosen normalization method.


Quality Score Quality Measure Stability Measure Quality Control Method Majority Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, D.T.: A graphical approach for quality control of oligonucleotide array data. J. Biopharm. Stat. 14(3), 591–606 (2004)CrossRefGoogle Scholar
  2. 2.
    Degenkolbe, T., Hannah, M.A., Freund, S., Hincha, D.K., Heyer, A.G., Köhl, K.I.: A quality-controlled microarray method for gene expression profiling. Anal. Biochem. 346(2), 217–224 (2005)CrossRefGoogle Scholar
  3. 3.
    Dumur, C.I., Nasim, S., Best, A.M., Archer, K.J., Ladd, A.C., Mas, V.R., Wilkinson, D.S., Garrett, C.T., Ferreira-Gonzalez, A.: Evaluation of quality-control criteria for microarray gene expression analysis. Clin. Chem. 50(11), 1994–2002 (2004)CrossRefGoogle Scholar
  4. 4.
    Gräf, S., Nielsen, F.G., Kurtz, S., Huynen, M.A., Birney, E., Stunnenberg, H., Flicek, P.: Optimized design and assessment of whole genome tiling arrays. Bioinformatics 23(13), 195–204 (2007)CrossRefGoogle Scholar
  5. 5.
    Kreil, D.P., Russell, R.R., Russell, S.: Microarray oligonucleotide probes. Methods Enzymol 410, 73–98 (2006)CrossRefGoogle Scholar
  6. 6.
    Li, F., Stormo, G.D.: Selection of optimal dna oligos for gene expression arrays. Bioinformatics 17(11), 1067–1076 (2001)CrossRefGoogle Scholar
  7. 7.
    Drăghici, S.: Data Analysis Tools for DNA Microarrays. Chapman & Hall/CRC, Boca Raton (2003)Google Scholar
  8. 8.
    Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., Fiegler, H., Shapero, M.H., Carson, A.R., Chen, W., Cho, E.K., Dallaire, S., Freeman, J.L., González, J.R., Gratacós, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J.R., Marshall, C.R., Mei, R., Montgomery, L., Nishimura, K., Okamura, K., Shen, F., Somerville, M.J., Tchinda, J., Valsesia, A., Woodwark, C., Yang, F., Zhang, J., Zerjal, T., Zhang, J., Armengol, L., Conrad, D.F., Estivill, X., Tyler-Smith, C., Carter, N.P., Aburatani, H., Lee, C., Jones, K.W., Scherer, S.W., Hurles, M.E.: Global variation in copy number in the human genome. Nature 444, 444–454 (2006)CrossRefGoogle Scholar
  9. 9.
    Smyth, G.K.: Limma: linear models for microarray data, pp. 397–420. Springer, New York (2005)Google Scholar
  10. 10.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2006)Google Scholar
  11. 11.
    Hill, A., Brown, E., Whitley, M., Tucker-Kellogg, G., Hunter, C., Slonim, D.: Evaluation of normalization procedures for oligonucleotide array data based on spiked crna controls. Genome Biology 2(12) (November 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Florian Battke
    • 1
  • Carsten Müller-Tidow
    • 2
  • Hubert Serve
    • 3
  • Kay Nieselt
    • 1
  1. 1.Center for Bioinformatics Tübingen, Department of Information and Cognitive SciencesUniversity of TübingenTübingenGermany
  2. 2.IZKF - Inderdisciplinary Center for Clinical Research at the University of MünsterMünsterGermany
  3. 3.Department of Internal Medicine IIUniversity Hospital, Johann Wolfgang Goethe-UniversityFrankfurt am MainGermany

Personalised recommendations