Constructing Phylogenetic Supernetworks from Quartets

  • Stefan Grünewald
  • Andreas Spillner
  • Kristoffer Forslund
  • Vincent Moulton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5251)


In phylogenetics it is common practice to summarize collections of partial phylogenetic trees in the form of supertrees. Recently it has been proposed to construct phylogenetic supernetworks as an alternative to supertrees as these allow the representation of conflicting information in the trees, information that may not be representable in a single tree. Here we introduce SuperQ, a new method for constructing such supernetworks. It works by breaking the input trees into quartet trees, and stitching together the resulting set to form a network. The stitching process is performed using an adaptation of the QNet method for phylogenetic network reconstruction. In addition to presenting the new method, we illustrate the applicability of SuperQ to three data sets and discuss future directions for testing and development.


Phylogenetic Network Partial Tree Input Tree Split Graph Split System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bryant, D.: A classification of consensus methods for phylogenies. In: Janowitz, M., Lapointe, F.J., McMorris, F., Mirkin, B., Roberts, F. (eds.) BioConsensus. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 61, pp. 163–184. American Mathematical Society (2003)Google Scholar
  2. 2.
    Bininda-Emonds, O.R.P. (ed.): Phylogenetic supertrees: Combining information to reveal the tree of life. Kluwer Academic Publishers, Dordrecht (2004)zbMATHGoogle Scholar
  3. 3.
    Holland, B., Conner, G., Huber, K., Moulton, V.: Imputing supertrees and supernetworks from quartets. Systematic Biology 56, 57–67 (2007)CrossRefGoogle Scholar
  4. 4.
    Holland, B., Delsuc, F., Moulton, V.: Visualizing conflicting evolutionary hypotheses in large collections of trees: Using consensus networks to study the origins of placentals and hexapods. Systematic Biology 54, 66–76 (2005)CrossRefGoogle Scholar
  5. 5.
    Holland, B., Jermiin, L., Moulton, V.: Improved consensus network techniques for genome-scale phylogeny. Molecular Biology and Evolution 23, 848–855 (2006)CrossRefGoogle Scholar
  6. 6.
    Holland, B., Moulton, V.: Consensus networks: A method for visualising incompatibilities in collections of trees. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 165–176. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Huson, D., Dezulian, T., Klöpper, T., Steel, M.: Phylogenetic super-networks from partial trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1, 151–158 (2004)CrossRefGoogle Scholar
  8. 8.
    Huson, D., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254–267 (2006)CrossRefGoogle Scholar
  9. 9.
    Grünewald, S., Forslund, K., Dress, A., Moulton, V.: QNet: An agglomerative method for the construction of phylogenetic networks from weighted quartets. Molecular Biology and Evolution 24, 532–538 (2007)CrossRefGoogle Scholar
  10. 10.
    Grünewald, S., Moulton, V., Spillner, A.: Consistency of the QNet algorithm for generating planar split graphs from weighted quartets. Discrete Applied Mathematics (in press, 2007)Google Scholar
  11. 11.
    Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  12. 12.
    Bandelt, H.J., Dress, A.: A canonical decomposition theory for metrics on a finite set. Advances in Mathematics 92, 47–105 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dress, A., Huson, D.: Constructing split graphs. IEEE Transactions on Computational Biology and Bioinformatics 1, 109–115 (2004)CrossRefGoogle Scholar
  14. 14.
    Winkworth, R., Bryant, D., Lockhart, P., Moulton, V.: Biogeographic interpretation of split graphs: studying quaternary plant diversification. Systematic Biology 54, 56–65 (2005)CrossRefGoogle Scholar
  15. 15.
    Lawson, C.L., Hanson, R.J.: Solving least squares problems. Prentice-Hall, Englewood Cliffs (1974)zbMATHGoogle Scholar
  16. 16.
    Huson, D.: SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73 (1998)CrossRefGoogle Scholar
  17. 17.
    Banks, J.C., Whitfield, J.B.: Dissecting the ancient rapid radiation of microgastrine wasp genera using additional nuclear genes. Molecular Phylogenetics and Evolution 41, 690–703 (2006)CrossRefGoogle Scholar
  18. 18.
    Pryor, B.M., Bigelow, D.M.: Molecular characterization of embellisia and nimbya species and their relationship to alternaria, ulocladium and stemphylium. Mycologia 95, 1141–1154 (2003)CrossRefGoogle Scholar
  19. 19.
    Pryor, B.M., Gilbertson, R.L.: Phylogenetic relationships among alternaria and related funghi based upon analysis of nuclear internal transcribed sequences and mitochondrial small subunit ribosomal DNA sequences. Mycological Research 104, 1312–1321 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Stefan Grünewald
    • 1
    • 2
  • Andreas Spillner
    • 3
  • Kristoffer Forslund
    • 4
  • Vincent Moulton
    • 3
  1. 1.CAS-MPG Partner Institute for Computational BiologyChinese Academy of SciencesShanghaiChina
  2. 2.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany
  3. 3.School of Computing SciencesUniversity of East AngliaNorwichUK
  4. 4.Stockholm Bioinformatics CentreStockholm UniversitySweden

Personalised recommendations