An Automated Combination of Kernels for Predicting Protein Subcellular Localization

  • Cheng Soon Ong
  • Alexander Zien
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5251)


Protein subcellular localization is a crucial ingredient to many important inferences about cellular processes, including prediction of protein function and protein interactions. While many predictive computational tools have been proposed, they tend to have complicated architectures and require many design decisions from the developer.

Here we utilize the multiclass support vector machine (m-SVM) method to directly solve protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems. We further propose a general class of protein sequence kernels which considers all motifs, including motifs with gaps. Instead of heuristically selecting one or a few kernels from this family, we utilize a recent extension of SVMs that optimizes over multiple kernels simultaneously. This way, we automatically search over families of possible amino acid motifs.

We compare our automated approach to three other predictors on four different datasets, and show that we perform better than the current state of the art. Further, our method provides some insights as to which sequence motifs are most useful for determining subcellular localization, which are in agreement with biological reasoning. Data files, kernel matrices and open source software are available at .


Support Vector Machine Amino Acid Motif Multiple Kernel Learning Protein Subcellular Localization Multiclass Support Vector Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)Google Scholar
  2. 2.
    Park, K.J., Kanehisa, M.: Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics 19(13), 1656–1663 (2003)CrossRefGoogle Scholar
  3. 3.
    Guda, C., Subramaniam, S.: TARGET: a new method for predicting protein subcellular localization in eukaryotes. Bioinformatics 21(21), 3963–3969 (2005)CrossRefGoogle Scholar
  4. 4.
    Yu, C.-S., Lin, C.-J., Hwang, J.-K.: Predicting subcellular localization of proteins for gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Science 13, 1402–1406 (2004)CrossRefGoogle Scholar
  5. 5.
    Gardy, J.L., Laird, M.R., Chen, F., Rey, S., Walsh, C.J., Ester, M., Brinkman, F.S.L.: PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinfomatics 21, 617–623 (2004)CrossRefGoogle Scholar
  6. 6.
    Höglund, A., Dönnes, P., Blum, T., Adolph, H.-W., Kohlbacher, O.: MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs, and amino acid composition. Bioinfomatics (2006)Google Scholar
  7. 7.
    Xie, D., Li, A., Wang, M., Fan, Z., Feng, H.: LOCSVMPSI: a web server for subcellular localization of eukaryotic proteins using SVM and profile of PSI-BLAST. Nucleic Acids Research 33, W105–W110 (2005)CrossRefGoogle Scholar
  8. 8.
    Garg, A., Bhasin, M., Raghava, G.P.S.: Support vector machine-based method for subcellular localization of human proteins using amino acid composition, their order, and similarity search. The Journal of Biological Chemistry 280(15), 14427–14432 (2005)CrossRefGoogle Scholar
  9. 9.
    Zien, A., Ong, C.S.: Multiclass multiple kernel learning. In: International Conference on Machine Learning (2007)Google Scholar
  10. 10.
    Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. In: Proceedings of the National Academy of Sciences, pp. 10915–10919 (1992)Google Scholar
  11. 11.
    Reinhardt, A., Hubbard, T.: Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Research 26, 2230–2236 (1998)CrossRefGoogle Scholar
  12. 12.
    Cui, Q., Jiang, T., Liu, B., Ma, S.: Esub8: A novel tool to predict protein subcellular localizations in eukaryotic organisms. BMC Bioinformatics 5(66) (2004)Google Scholar
  13. 13.
    Hein, M., Bousquet, O.: Hilbertian metrics and positive definite kernels on probability measures. In: Cowell, R., Ghahramani, Z. (eds.) Proceedings of AISTATS 2005, pp. 136–143 (2005)Google Scholar
  14. 14.
    Lanckriet, G., De Bie, T., Cristianini, N., Jordan, M.I., Stafford Noble, W.: A statistical framework for genomic data fusion. Bioinfomatics 20(16), 2626–2635 (2004)CrossRefGoogle Scholar
  15. 15.
    Sonnenburg, S., Rätsch, G., Schäfer, C.: A general and efficient multiple kernel learning algorithm. In: Neural Information Processings Systems (2005)Google Scholar
  16. 16.
    Hettich, R., Kortanek, K.O.: Semi-Infinite Programming: Theory, Methods, and Applications. SIAM Review 35(3), 380–429 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lee, Y., Kim, Y., Lee, S., Koo, J.-Y.: Structured multicategory support vector machines with analysis of variance decomposition. Biometrika 93(3), 555–571 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Roth, V., Fischer, B.: Improved functional prediction of proteins by learning kernel combinations in multilabel settings. BMC Bioinformatics 8 (suppl. 2), 12 (2007)CrossRefGoogle Scholar
  19. 19.
    Nair, R., Rost, B.: Sequence conserved for subcellular localization. Protein Science 11, 2836–2847 (2002)CrossRefGoogle Scholar
  20. 20.
    Yu, C.-S., Chen, Y.-C., Lu, C.-H., Hwang, J.-K.: Prediction of protein subcellular localization. Proteins: Structure, Function and Bioinformatics 64(3), 643–651 (2006)CrossRefGoogle Scholar
  21. 21.
    Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D., Yeates, T.O.: Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles. Proceedings of the National Academy of Sciences 96(8), 4285–4288 (1999)CrossRefGoogle Scholar
  22. 22.
    Emanuelsson, O., Nielsen, H., Brunak, S., von Heijne, G.: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology 300, 1005–1016 (2000)CrossRefGoogle Scholar
  23. 23.
    Marcotte, E.M., Xenarios, I., van der Bliek, A.M., Eisenberg, D.: Localizing proteins in the cell from their phylogenetic profiles. Proceedings of the National Academy of Sciences 97(22), 12115–12120 (2000)CrossRefGoogle Scholar
  24. 24.
    Zien, A., Sonnenburg, S., Philips, P., Rätsch, G.: POIMS: Positional Oligomer Importance Matrices – Understanding Support Vector Machine Based Signal Detectors. In: Proceedings of the 16th International Conference on Intelligent Systems for Molecular Biology (2008)Google Scholar
  25. 25.
    Höglund, A., Blum, T., Brady, S., Dönnes, P., San Miguel, J., Rocheford, M., Kohlbacher, O., Shatkay, H.: Significantly improved prediction of subcellular localization by integrating text and protein sequence data. In: Pacific Symposium on Biocomputing, pp. 16–27 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Cheng Soon Ong
    • 1
    • 2
  • Alexander Zien
    • 1
    • 3
  1. 1.Friedrich Miescher LaboratoryTübingenGermany
  2. 2.Max Planck Institute for Biological CyberneticsTübingenGermany
  3. 3.Fraunhofer Institute FIRSTBerlinGermany

Personalised recommendations