Advertisement

An Efficient Lagrangian Relaxation for the Contact Map Overlap Problem

  • Rumen Andonov
  • Nicola Yanev
  • Noël Malod-Dognin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5251)

Abstract

Among the measures for quantifying the similarity between protein 3-D structures, contact map overlap (CMO) maximization deserved sustained attention during past decade. Despite this large involvement, the known algorithms possess a modest performance and are not applicable for large scale comparison.

This paper offers a clear advance in this respect. We present a new integer programming model for CMO and propose an exact B&B algorithm with bounds obtained by a novel Lagrangian relaxation. The efficiency of the approach is demonstrated on a popular small benchmark (Skolnick set, 40 domains). On this set our algorithm significantly outperforms the best existing exact algorithms. Many hard CMO instances have been solved for the first time. To assess furthermore our approach, we constructed a large scale set of 300 protein domains. Computing the similarity measure for any of the 44850 couples, we obtained a classification in excellent agreement with SCOP.

Keywords

Protein structure alignment contact map overlap combinatorial optimization integer programming branch and bound Lagrangian relaxation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gibrat, J.-F., Madej, T., Bryant, S.H.: Surprising similarities in structure comparison. Curr. Opin. Struct. Biol. 6, 377–385 (1996)CrossRefGoogle Scholar
  2. 2.
    Caprara, A., Carr, R., Israil, S., Lancia, G., Walenz, B.: 1001 Optimal PDB Structure Alignments: Integer Programming Methods for Finding the Maximum Contact Map Overlap. J. Comput. Biol. 11(1), 27–52 (2004)CrossRefGoogle Scholar
  3. 3.
    Halperin, I., Ma, B., Wolfson, H., et al.: Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins Struct. Funct. Genet. 47, 409–443 (2002)CrossRefGoogle Scholar
  4. 4.
    Godzik, A.: The Structural alignment between two proteins: is there a unique answer? Protein Science 5, 1325–1338 (1996)CrossRefGoogle Scholar
  5. 5.
    Goldman, D., Israil, S., Papadimitriu, C.: Algorithmic aspects of protein structure similarity. In: IEEE Symp. Found. Comput. Sci., pp. 512–522 (1999)Google Scholar
  6. 6.
    Caprara, A., Lancia, G.: Structural Alignment of Large-Size Protein via Lagrangian Relaxation. In: RECOMB 2002, pp. 100–108 (2002)Google Scholar
  7. 7.
    Lancia, G., Istrail, S.: Protein Structure Comparison: Algorithms and Applications. Prot. Str. Anal. Des., 1–33 (2003)Google Scholar
  8. 8.
    Carr, R., Lancia, G.: Compact optimization can outperform separation: A case study in structural proteomics. 4OR 2, 221–233 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Agarwal, P.K., Mustafa, N.H., Wang, Y.: Fast Molecular Shape Matching Using Contact Maps. J. Comput. Biol. 14(2), 131–147 (2007)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Xu, J., Jiao, F., Berger, B.: A parametrized Algorithm for Protein Structure Alignment. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 488–499. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-completness. Freeman and company, New York (1979)Google Scholar
  12. 12.
    Crescenzi, P., Kann, V.: A compendium of NP optimization problems, http://www.nada.kth.se/~viggo/problemlist/
  13. 13.
    Strickland, D.M., Barnes, E., Sokol, J.S.: Optimal Protein Structure Alignment Using Maximum Cliques. Oper. Res. 53, 389–402 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Xie, W., Sahinidis, N.: A Reduction-Based Exact Algorithm for the Contact Map Overlap Problem. J. Comput. Biol. 14, 637–654 (2007)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Bauer, M., Klau, G.W., Reinert, K.: Fast and Accurate Structural RNA Alignment by Progressive Lagrangian Optimization. In: R. Berthold, M., Glen, R.C., Diederichs, K., Kohlbacher, O., Fischer, I. (eds.) CompLife 2005. LNCS (LNBI), vol. 3695, pp. 217–228. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Andonov, R., Balev, S., Yanev, N.: Protein threading: From mathematical models to parallel implementations. INFORMS J. on Comput. 16(4) (2004)Google Scholar
  17. 17.
    Veber, P., Yanev, N., Andonov, R., Poirriez, V.: Optimal protein threading by cost-splitting. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 365–375. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Yanev, N., Veber, P., Andonov, R., Balev, S.: Lagrangian approaches for a class of matching problems. Comp. and Math. with Appl. 55(5), 1054–1067 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Andreeva, A., Howorth, D., Chandonia, J.-M., Brenner, S.E., Hubbard, T.J.P., Chothia, C., Murzin, A.G.: Data growth and its impact on the SCOP database: new developments. Nucl. Acid Res (2007)Google Scholar
  20. 20.
    Lerman, I.C.: Likelihood linkage analysis (LLA) classification method (Around an example treated by hand). Biochimie, Elsevier Editions 75, 379–397 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rumen Andonov
    • 1
  • Nicola Yanev
    • 2
  • Noël Malod-Dognin
    • 1
  1. 1.INRIA Rennes - Bretagne Atlantique and University of Rennes 1 
  2. 2.University of SofiaBulgaria

Personalised recommendations