Sample Path Properties of Anisotropic Gaussian Random Fields

Part of the Lecture Notes in Mathematics book series (LNM, volume 1962)

Anisotropic Gaussian random fields arise in probability theory and in various applications. Typical examples are fractional Brownian sheets, operator-scaling Gaussian fields with stationary increments, and the solution to the stochastic heat equation.

This paper is concerned with sample path properties of anisotropic Gaussian random fields in general. Let \(X = \left\{ {X\left( t \right),t \in {\rm{R}}^N } \right\}\) be a Gaussian random field with values in Rd and with parameters H1,…,HN. Our goal is to characterize the anisotropic nature of X in terms of its parameters explicitly.

Under some general conditions, we establish results on the modulus of continuity, small ball probabilities, fractal dimensions, hitting probabilities and local times of anisotropic Gaussian random fields. An important tool for our study is the various forms of strong local nondeterminism.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Adler (1981), The Geometry of Random Fields. John Wiley & Sons Ltd.,New York.MATHGoogle Scholar
  2. 2.
    L. Arnold and P. Imkeller (1996), Stratonovich calculus with spatial parameters and anticipative problems in multiplicative ergodic theory. S toch. P rocess.Appl. 62, 19–54.MATHMathSciNetGoogle Scholar
  3. 3.
    A. Ayache (2004), Hausdorff dimension of the graph of the fractional Brownian sheet. Rev. Mat. Iberoamericana, 20, 395–412.MATHMathSciNetGoogle Scholar
  4. 4.
    A. Ayache, S. Leger and M. Pontier (2002), Drap Brownien fractionnaire.Potential Theory 17, 31–43.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. Ayache and M. S. Taqqu (2003), Rate optimality of wavelet series approximations of fractional Brownian sheet. J. Fourier Anal. Appl. 9,451–471.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. Ayache, D. Wu and Y. Xiao (2006), Joint continuity of the local times of fractional Brownian sheets. Ann. Inst. H. Poincaré Probab. Statist., (to appear).Google Scholar
  7. 7.
    A. Ayache and Y. Xiao (2005), Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets. J. Fourier Anal. Appl. 11, 407–439.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    R. Balan and D. Kim (2006), The stochastic heat equation driven by a Gaussian noise: Markov property. Preprint.Google Scholar
  9. 9.
    E. Belinski and W. Linde (2002), Small ball probabilities of fractional Brow-nian sheets via fractional integration operators. J. Theoret. Probab. 15,589–612.CrossRefMathSciNetGoogle Scholar
  10. 10.
    A. Benassi, S. Jaffard and D. Roux (1997), Elliptic Gaussian random processes.Rev. Mat. Iberoamericana 13, 19–90.MATHMathSciNetGoogle Scholar
  11. 11.
    D. A. Benson, M. M. Meerschaert, B. Baeumer and H. P. Scheffler (2006),Aquifer operator-scaling and the effect on solute mixing and dispersion. Water Resources Research 42, no. 1, W01415 (18 pp.).CrossRefGoogle Scholar
  12. 12.
    C. Berg and G. Forst (1975), Potential Theory on Locally Compact Abelian Groups. Springer-Verlag, New York-Heidelberg.MATHGoogle Scholar
  13. 13.
    S. M. Berman (1972), Gaussian sample function: uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46, 63–86.MATHMathSciNetGoogle Scholar
  14. 14.
    S. M. Berman (1973), Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23, 69–94.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    H. Biermé, A. Estrade, M. M. Meerschaert and Y. Xiao (2008), Sample pathGoogle Scholar
  16. 16.
    H. Biermé, C. Lacaux and Y. Xiao (2007), Hitting probabilities and the Haus-dorff dimension of the inverse images of anisotropic Gaussian random fields.Preprint.Google Scholar
  17. 17.
    H. Biermé, M. M. Meerschaert and H.-P. Scheffler (2007), Operator scaling stable random fields. Stoch. Process. Appl. 117, 312–332.MATHCrossRefGoogle Scholar
  18. 18.
    A. Bonami and A. Estrade (2003), Anisotropic analysis of some Gaussian models. J. Fourier Anal. Appl. 9, 215–236.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    J, Cuzick and J. DuPreez (1982), Joint continuity of Gaussian local times.Ann. Probab. 10, 810–817.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    R. C. Dalang (1999), Extending martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.'s. Electron. J. Probab. 4, no. 6,1–29. Erratum in Electron. J. Probab. 6 (2001), no. 6, 1–5.MathSciNetGoogle Scholar
  21. 21.
    R. C. Dalang and N. E. Frangos (1998), The stochastic wave equation in two spatial dimensions. Ann. Probab. 26, 187–212.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    R. C. Dalang, D. Khoshnevisan and E. Nualart (2007), Hitting probabilities for systems of non-linear stochastic heat equations with additive noise. Latin Amer. J. Probab. Statist. (Alea) 3, 231–271.MathSciNetMATHGoogle Scholar
  23. 23.
    R. C. Dalang, D. Khoshnevisan and E. Nualart (2007), Hitting probabilities for the non-linear stochastic heat equation with multiplicative noise. Submitted.Google Scholar
  24. 24.
    R. C. Dalang and C. Mueller (2003), Some non-linear s.p.e.e.'s that are second order in time. Electron. J. Probab. 8, No. 1, 1–21.MathSciNetGoogle Scholar
  25. 25.
    R. C. Dalang, C. Mueller and L. Zambotti, (2006), Hitting properties of parabolic s.p.d.e.'s with reflection. Ann. Probab. 34, 1423–1450.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    R. C. Dalang and E. Nualart (2004), Potential theory for hyperbolic SPDEs. Ann. Probab. 32, 2099–2148.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    R. C. Dalang and M. Sanz-Solé (2005), Regularity of the sample paths of a class of second-order spde's. J. Funct. Anal. 227, 304–337.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    R. C. Dalang and M. Sanz-Solé (2007), Hölder regularity of the solution to the stochastic wave equation in dimension three. Memoirs Amer. Math. Soc.,(to appear).Google Scholar
  29. 29.
    S. Davies and P. Hall (1999), Fractal analysis of surface roughness by using spatial data (with discussion). J. Roy. Statist. Soc. Ser. B 61, 3–37.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    P. Doukhan, G. Oppenheim and M. S. Taqqu (2003), Theory and Applications of Long-Range Dependence. Birkhaüser, Boston.MATHGoogle Scholar
  31. 31.
    M. Dozzi (2002), Occupation density and sample path properties of N-parameter processes. Topics in Spatial Stochastic Processes (Martina Franca,2001), pp. 127–169, Lecture Notes in Math. 1802, Springer, Berlin.Google Scholar
  32. 32.
    T. Dunker (2000), Estimates for the small ball probabilities of the fractional Brownian sheet. J. Theoret. Probab. 13, 357–382.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    K. Dzhaparidze and H. van Zanten (2005), Optimality of an explicit series of the fractional Browinan sheet. Statist. Probab. Lett. 71, 295–301.MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    W. Ehm (1981), Sample function properties of multi-parameter stable processes. Z. Wahrsch. verw Gebiete 56, 195–228.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    N. Eisenbaum and D. Khoshnevisan (2002), On the most visited sites of symmetric Markov processes. Stoch. Process. Appl. 101, 241–256.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    K. J. Falconer (1990), Fractal Geometry — Mathematical Foundations And Applications. John Wiley & Sons Ltd., Chichester.MATHGoogle Scholar
  37. 37.
    K. J. Falconer and J. D. Howroyd (1997), Packing dimensions for projections and dimension profiles. Math. Proc. Camb. Philo. Soc. 121, 269–286.MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    T. Funaki (1983), Random motion of strings and related stochastic evolution equations. Nagoya Math. J. 89, 129–193.MATHMathSciNetGoogle Scholar
  39. 39.
    T. Funaki, M. Kikuchi and J. Potthoff (2006), Direction-dependent modulus of continuity for random fields. Preprint.Google Scholar
  40. 40.
    A. M. Garsia, E. Rodemich and H. Jr. Rumsey (1970), A real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. J. 20, 565–578.MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    D. Geman and J. Horowitz (1980), Occupation densities. Ann. Probab. 8, 1–67.MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    J. Hawkes (1978), Measures of Hausdorff type and stable processes. Mathe-matika 25, 202–210.MathSciNetGoogle Scholar
  43. 43.
    E. Herbin (2006), From N parameter fractional Brownian motions to N parameter multifractional Brownian motions. Rocky Mount. J. Math. 36, 1249–1284.MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    X. Hu and S. J. Taylor (1994), Fractal properties of products and projections of measures in Rd. Math. Proc. Camb. Philos. Soc., 115, 527–544.MATHMathSciNetGoogle Scholar
  45. 45.
    Y. Hu, B. ϕksendal and T. Zhang (2000), Stochastic partial differential equations driven by multiparameter fractional white noise. Stochastic Processes, Physics and Geometry: new interplays, II (Leipzig, 1999), 327–337, Amer. Math. Soc., Providence, RI.Google Scholar
  46. 46.
    J.-P. Kahane (1985), Some Random Series of Functions. 2nd edition, Cambridge University Press, Cambridge.MATHGoogle Scholar
  47. 47.
    A. Kamont (1996), On the fractional anisotropic Wiener field. Probab. Math. Statist. 16, 85–98.MATHMathSciNetGoogle Scholar
  48. 48.
    R. Kaufman (1972), Measures of Hausdorff-type, and Brownian motion. Mathematika 19, 115–119.MATHMathSciNetGoogle Scholar
  49. 49.
    D. Khoshnevisan (2002), Multiparameter Processes: An Introduction to Random Fields. Springer, New York.MATHGoogle Scholar
  50. 50.
    D. Khoshnevisan and Z. Shi (1999), Brownian sheet and capacity. Ann. Probab. 27, 1135–1159.MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    D. Khoshnevisan, D. Wu and Y. Xiao (2006), Sectorial local nondeterminism and the geometry of the Brownian sheet. El ectron. J. P robab. 11, 817–843.MathSciNetGoogle Scholar
  52. 52.
    D. Khoshnevisan and Y. Xiao (2002), Level sets of additive Lévy processes. Ann. Probab. 30, 62–100.MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    D. Khoshnevisan and Y. Xiao (2003), Weak unimodality of finite measures, and an application to potential theory of additive Lévy processes. Proc. Amer. Math. Soc. 131, 2611–2616.MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    D. Khoshnevisan and Y. Xiao (2005), Lévy processes: capacity and Hausdorff dimension. Ann. Probab. 33, 841–878.MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    D. Khoshnevisan and Y. Xiao (2007a), Images of the Brownian sheet. Trans. Amer. Math. Soc. 359, 3125–3151.MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    D. Khoshnevisan and Y. Xiao (2007b), Harmonic analysis of additive Lévy processes. Submitted.Google Scholar
  57. 57.
    D. Khoshnevisan, Y. Xiao and Y. Zhong (2003), Measuring the range of an additive Lévy process. Ann. Probab. 31, 1097–1141.MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    N. Kôno (1975), Asymptotoc behavior of sample functions of Gaussian random fields. J. Math. Kyoto Univ. 15, 671–707.MATHMathSciNetGoogle Scholar
  59. 59.
    T. Kühn and W. Linde (2002), Optimal series representation of fractional Brownian sheet. Bernoulli 8, 669–696.MATHMathSciNetGoogle Scholar
  60. 60.
    S. Kwapień and J. Rosiński (2004), Sample Hölder continuity of stochastic processes and majorizing measures. In: Seminar on Stochastic Analysis, Random Fields and Applications IV, pp. 155–163, Progr. Probab., 58, Birkhäuser, Basel.Google Scholar
  61. 61.
    M. Ledoux (1996), Isoperimetry and Gaussian analysis. Lecture Notes in Math. 1648, 165–294, Springer-Verlag, Berlin.Google Scholar
  62. 62.
    W. V. Li and Q.-M. Shao (2001), Gaussian processes: inequalities, small ball probabilities and applications. In Stochastic Processes: Theory and Methods. Handbook of Statistics, 19, (C. R. Rao and D. Shanbhag, editors), pp. 533– 597, North-Holland.Google Scholar
  63. 63.
    M. A. Lifshits (1999), Asymptotic behavior of small ball probabilities. In: Probab. Theory and Math. Statist., Proc. VII International Vilnius Conference (1998). Vilnius, VSP/TEV, pp. 453–468.Google Scholar
  64. 64.
    W. Linde (2007), Non-determinism of linear operators and lower entropy estimates. Preprint.Google Scholar
  65. 65.
    D. J. Mason and Y. Xiao (2001), Sample path properties of operator self-similar Gaussian random fields. Teor. Veroyatnost. i Primenen. 46, 94–116.MathSciNetGoogle Scholar
  66. 66.
    D. M. Mason and Z. Shi (2001), Small deviations for some multi-parameter Gaussian processes. J. Theoret. Probab. 14, 213–239.MATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    P. Mattila (1995), Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge.MATHGoogle Scholar
  68. 68.
    M. M. Meerschaert, W. Wang and Y. Xiao (2007), Fernique-type inequalities and moduli of continuity for anisotropic Gaussian random fields. Preprint.Google Scholar
  69. 69.
    M. M. Meerschaert, D. Wu and Y. Xiao (2008), Self-intersection local times of fractional Brownian sheets. In Preparation.Google Scholar
  70. 70.
    D. Monrad and L. D. Pitt (1987), Local nondeterminism and Hausdorff dimension. Progress in Probability and Statistics. Seminar on Stochastic Processes 1986, (E, Cinlar, K. L. Chung, R. K. Getoor, Editors), pp. 163–189, Birkhäuser, Boston.Google Scholar
  71. 71.
    D. Monrad and H. Rootzén (1995), Small values of Gaussian processes and functional laws of the iterated logarithm. Probab. Thory Relat. Fields 101, 173–192.MATHCrossRefGoogle Scholar
  72. 72.
    T. S. Mountford (1989), Uniform dimension results for the Brownian sheet. Ann. Probab. 17, 1454–1462.MATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    C. Mueller and R. Tribe (2002), Hitting probabilities of a random string. Electron. J. Probab. 7, Paper No. 10, 1–29.MathSciNetGoogle Scholar
  74. 74.
    D. Nualart (2006), Stochastic heat equation driven by fractional noise. Preprint.Google Scholar
  75. 75.
    B. Ôksendal and T. Zhang (2000), Multiparameter fractional Brownian motion and quasi-linear stochastic partial differential equations. Stoch. Stoch. Rep. 71, 141–163.Google Scholar
  76. 76.
    S. Orey and W. E. Pruitt (1973), Sample functions of the N-parameter Wiener process. Ann. Probab. 1, 138–163.MATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    L. D. Pitt (1978), Local times for Gaussian vector fields. Indiana Univ. Math. J. 27, 309–330.MATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    L. D. Pitt and R. S. Robeva (2003), On the sharp Markov property for Gaussian random fields and spectral synthesis in spaces of Bessel potentials. Ann. Probab. 31, 1338–1376.MATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    R. S. Robeva and L. D. Pitt (2004), On the equality of sharp and germ σ-fields for Gaussian processes and fields. Pliska Stud. Math. Bulgar. 16, 183–205.MathSciNetGoogle Scholar
  80. 80.
    C. A. Rogers and S. J. Taylor (1961), Functions continuous and singular with respect to a Hausdorff measure. Mathematika 8, 1–31.MATHMathSciNetCrossRefGoogle Scholar
  81. 81.
    J. Rosen (1984), Self-intersections of random fields. Ann. Probab. 12, 108–119.MATHCrossRefMathSciNetGoogle Scholar
  82. 82.
    G. Samorodnitsky and M. S. Taqqu (1994), Stable non-Gaussian Random Processes: Stochastic models with infinite variance. Chapman & Hall, New Yo r k.MATHGoogle Scholar
  83. 83.
    N.-R. Shieh and Y. Xiao (2006), Images of Gaussian random fields: Salem sets and interior points. Studia Math. 176, 37–60.MATHMathSciNetGoogle Scholar
  84. 84.
    M. Talagrand (1993), New Gaussian estimates for enlarged balls. Geometric Fu n c t. An a l. 3, 502–526.MATHCrossRefMathSciNetGoogle Scholar
  85. 85.
    M. Talagrand (1995), Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab. 23, 767–775.MATHCrossRefMathSciNetGoogle Scholar
  86. 86.
    M. Talagrand (1998), Multiple points of trajectories of multiparameter fractional Brownian motion. Probab. Theory Relat. Fields 112, 545–563.MATHCrossRefMathSciNetGoogle Scholar
  87. 87.
    M. Talagrand and Y. Xiao (1996), Fractional Brownian motion and packing dimension. J. Theoret. Probab. 9, 579–593.MATHCrossRefMathSciNetGoogle Scholar
  88. 88.
    S. J. Taylor (1986), The measure theory of random fractals. Math. Proc. Camb. Philos. Soc. 100, 383–406.MATHCrossRefGoogle Scholar
  89. 89.
    S. J. Taylor and C. Tricot (1985), Packing measure and its evaluation for a Brownian path. Trans. Amer. Math. Soc. 288, 679–699.MATHCrossRefMathSciNetGoogle Scholar
  90. 90.
    S. J. Taylor and A. A. Watson (1985), A Hausdorff measure classification of polar sets for the heat equation. Math. Proc. Camb. Philos. Soc. 97, 325–344.MATHMathSciNetGoogle Scholar
  91. 91.
    F. Testard (1986), Polarité, points multiples et géométrie de certain proces-sus gaussiens. Publ. du Laboratoire de Statistique et Probabilités de l'U.P.S. Toulouse, 01–86.Google Scholar
  92. 92.
    C. Tricot (1982), Two definitions of fractional dimension. Math. Proc. Camb.Philos. Soc. 91, 57–74.MATHMathSciNetGoogle Scholar
  93. 93.
    C. A. Tudor and Y. Xiao (2007), Sample path properties of bifractional Brownian motion. Bernoulli 14, 1023–1052.CrossRefMathSciNetGoogle Scholar
  94. 94.
    J. B. Walsh (1986), An introduction to stochastic partial differential equations.École d'été de probabilités de Saint-Flour, XIV—1984, 265–439, Lecture Notes in Math., 1180, Springer, Berlin.Google Scholar
  95. 95.
    W. Wang (2007), Almost-sure path properties of fractional Brownian sheet.Ann. Inst. H. Poincaré Probab. Statist. 43, 619–631.MATHCrossRefGoogle Scholar
  96. 96.
    D. Wu and Y. Xiao (2006), Fractal properties of random string processes. IMS Lecture Notes-Monograph Series—High Dimensional Probability. 51, 128–147.CrossRefMathSciNetGoogle Scholar
  97. 97.
    D. Wu and Y. Xiao (2007), Geometric properties of fractional Brownian sheets.J. Fourier Anal. Appl. 13, 1–37.MATHCrossRefMathSciNetGoogle Scholar
  98. 98.
    Y. Xiao (1995), Dimension results for Gaussian vector fields and index-α stable fields. Ann. Probab. 23, 273–291.MATHCrossRefMathSciNetGoogle Scholar
  99. 99.
    Y. Xiao (1996a), Hausdorff measure of the sample paths of Gaussian random fields. Osaka J. Math. 33, 895–913.MATHGoogle Scholar
  100. 100.
    Y. Xiao (1996b), Packing measure of the sample paths of fractional Brownian motion. Trans. Amer. Math. Soc. 348, 3193–3213.MATHCrossRefGoogle Scholar
  101. 101.
    Y. Xiao (1997a), Hausdorff measure of the graph of fractional Brownian motion. Math. Proc. Camb. Philos. Soc. 122, 565–576.MATHCrossRefGoogle Scholar
  102. 102.
    Y. Xiao (1997b), Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Relat. Fields 109, 129–157.MATHCrossRefGoogle Scholar
  103. 103.
    Y. Xiao (1997c), Packing dimension of the image of fractional Brownian motion. Statist. Probab. Lett. 33, 379–387.MATHCrossRefGoogle Scholar
  104. 104.
    Y. Xiao (1999), Hitting probabilities and polar sets for fractional Brownian motion. Stoch. Stoch. Rep. 66, 121–151.MATHGoogle Scholar
  105. 105.
    Y. Xiao (2003), The packing measure of the trajectories of multiparameter fractional Brownian motion. Math. Proc. Camb. Philos. Soc. 135, 349–375.MATHCrossRefGoogle Scholar
  106. 106.
    Y. Xiao (2004), Random fractals and Markov processes. In: Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, (M. L. Lapidus and M. van Frankenhuijsen, editors), pp. 261–338, American Mathematical Society.Google Scholar
  107. 107.
    Y. Xiao (2006), Properties of local nondeterminism of Gaussian and stable random fields and their applications. Ann. Fac. Sci. Toulouse Math. XV, 157–193.Google Scholar
  108. 108.
    Y. Xiao (2007), Strong local nondeterminism and sample path properties of Gaussian random fields. In: Asymptotic Theory in Probability and Statistics with Applications (T.-L. Lai, Q.-M. Shao and L. Qian, eds), pp. 136–176, Higher Education Press, Beijing.Google Scholar
  109. 109.
    Y. Xiao (2008), Spectral conditions for strong local nondeterminism of Gaussian random fields. In Preparation.Google Scholar
  110. 110.
    Y. Xiao and T. Zhang (2002), Local times of fractional Brownian sheets. Probab. Theory Relat. Fields 124, 204–226.MATHCrossRefMathSciNetGoogle Scholar
  111. 111.
    A. M. Yaglom (1957), Some classes of random fields in n-dimensional space, related to stationary random processes. Th. Probab. Appl. 2, 273–320.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

There are no affiliations available

Personalised recommendations