Advertisement

Software Strategy for Robotic Transperineal Prostate Therapy in Closed-Bore MRI

  • Junichi Tokuda
  • Gregory S. Fischer
  • Csaba Csoma
  • Simon P. DiMaio
  • David G. Gobbi
  • Gabor Fichtinger
  • Clare M. Tempany
  • Nobuhiko Hata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5242)

Abstract

A software strategy to provide intuitive navigation for MRI-guided robotic transperineal prostate therapy is presented. In the system, the robot control unit, the MRI scanner, and open-source navigation software are connected to one another via Ethernet to exchange commands, coordinates, and images. Six states of the system called “workphases” are defined based on the clinical scenario to synchronize behaviors of all components. The wizard-style user interface allows easy following of the clinical workflow. On top of this framework, the software provides features for intuitive needle guidance: interactive target planning; 3D image visualization with current needle position; treatment monitoring through real-time MRI. These features are supported by calibration of robot and image coordinates by the fiducial-based registration. The performance test shows that the registration error of the system was 2.6 mm in the prostate area, and it displayed real-time 2D image 1.7 s after the completion of image acquisition.

Keywords

Prostate Biopsy Endorectal Coil Prostate Brachytherapy Navigation Software Software Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D’Amico, A.V., Cormack, R., Tempany, C.M., et al.: Real-time magnetic resonance image-guided interstitial brachytherapy in the treatment of select patients with clinically localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 42(3), 507–515 (1998)CrossRefGoogle Scholar
  2. 2.
    D’Amico, A.V., Tempany, C.M., Cormack, R., others,: Transperineal magnetic resonance image guided prostate biopsy. J. Urol. 164(2), 385–387 (2000)CrossRefGoogle Scholar
  3. 3.
    Susil, R., Camphausen, K., Choyke, P., et al.: System for prostate brachytherapy and biopsy in a standard 1.5 T MRI scanner. Magn. Reson. Med. 52(3), 683–687 (2004)CrossRefGoogle Scholar
  4. 4.
    Sosna, J., Pedrosa, I., Dewolf, W., et al.: MR imaging of the prostate at 3 tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 tesla. Acad. Radiol. 11(8), 857–862 (2004)CrossRefGoogle Scholar
  5. 5.
    Bloch, B., Rofsky, N., Baroni, R., et al.: 3 tesla magnetic resonance imaging of the prostate with combined pelvic phased-array and endorectal coils; initial experience(1). Acad. Radiol. 11(8), 863–867 (2004)Google Scholar
  6. 6.
    Futterer, J., Scheenen, T., Huisman, H.: Initial experience of 3 tesla endorectal coil magnetic resonance imaging and 1h-spectroscopic imaging of the prostate. Invest. Radiol. 39(11), 671–680 (2004)CrossRefGoogle Scholar
  7. 7.
    Krieger, A., Susil, R.C., Menard, C., et al.: Design of a novel MRI compatible manipulator for image guided prostate interventions. In: IEEE TBME, February 2005, vol. 52, pp. 306–313 (2005)Google Scholar
  8. 8.
    Zangos, S., Eichler, K., Engelmann, K., et al.: MR-guided transgluteal biopsies with an open low-field system in patients with clinically suspected prostate cancer: technique and preliminary results. Eur. Radiol. 15(1), 174–182 (2005)CrossRefGoogle Scholar
  9. 9.
    Fischer, G.S., Iordachita, I., Csoma, C., et al.: MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement. IEEE/ASME Trans. Mechatronics 13(3), 295–305 (2008)Google Scholar
  10. 10.
    DiMaio, S., Samset, E., Fischer, G., et al.: Dynamic MRI scan plane control for passive tracking of instruments and devices. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 50–58. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    DiMaio, S.P., Salcudean, S.: Needle steering and motion planning in soft tissues. IEEE Trans. Biomed. Eng. 52(6), 965–974 (2005)CrossRefGoogle Scholar
  12. 12.
    Gering, D.T., Nabavi, A., Kikinis, R., et al.: An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J. Magn. Reson. Imag. 13(6), 967–975 (2001)CrossRefGoogle Scholar
  13. 13.
    Spiczak, J.V., Samset, E., Dimaio, S., et al.: Device connectivity for image-guided medical applications. Stud. Health Technol. Inform. 125 (2007)Google Scholar
  14. 14.
    Morikawa, S., Inubushi, T., Kurumi, Y., et al.: MR-guided microwave thermocoagulation therapy of liver tumors: Initial clinical experiences using a 0.5 T open MR system. Journal of Magnetic Resonance Imaging 16(5), 576–583 (2002)CrossRefGoogle Scholar
  15. 15.
    Blumenfeld, P., Hata, N., DiMaio, S., et al.: Transperineal prostate biopsy under magnetic resonance image guidance: a needle placement accuracy study. J. Magn. Reson. Imaging 26(3), 688–694 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Junichi Tokuda
    • 1
  • Gregory S. Fischer
    • 2
  • Csaba Csoma
    • 2
  • Simon P. DiMaio
    • 3
  • David G. Gobbi
    • 4
  • Gabor Fichtinger
    • 4
  • Clare M. Tempany
    • 1
  • Nobuhiko Hata
    • 1
  1. 1.Department of RadiologyBrigham and Women’s Hospital, and Harvard Medical SchoolBostonUSA
  2. 2.Engineering Research Center for Computer Integrated SurgeryJohns Hopkins UniversityBaltimoreUSA
  3. 3.Intuitive Surgical Inc.SunnyvaleUSA
  4. 4.School of ComputingQueen’s UniversityKingstonCanada

Personalised recommendations