MRI Compatibility of Robot Actuation Techniques – A Comparative Study

  • Gregory S. Fischer
  • Axel Krieger
  • Iulian Iordachita
  • Csaba Csoma
  • Louis L. Whitcomb
  • Gabor Fichtinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5242)


This paper reports an experimental evaluation of the following three different MRI-compatible actuators: a Shinsei ultrasonic motor, a Nanomotion ultrasonic motor and a pneumatic cylinder actuator. We report the results of a study comparing the effect of these actuators on the signal to noise ratio (SNR) of MRI images under a variety of experimental conditions. Evaluation was performed with the controller inside and outside the scanner room and with both 1.5T and 3T MRI scanners. Pneumatic cylinders function with no loss of SNR with controller both inside and outside of the scanner room. The Nanomotion motor performs with moderate loss of SNR when moving during imaging. The Shinsei is unsuitable for motion during imaging. All may be used when motion is appropriately interleaved with imaging cycles.


Prostate Biopsy Ultrasonic Motor Pneumatic Cylinder Scanner Room Actuation Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chinzei, K., Hata, N., Jolesz, F.A., Kikinis, R.: MR compatible surgical assist robot: system integration and preliminary feasibility study. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 921–933. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Tsekos, N.V., Khanicheh, A., Christoforou, E., Mavroidis, C.: Magnetic resonance–compatible robotic and mechatronics systems for image-guided interventions and rehabilitation. In: An Rev BME, August 2007, vol. 9, pp. 351–387 (2007)Google Scholar
  3. 3.
    Masamune, K., Kobayashi, E., Masutani, Y., Suzuki, M., Dohi, T., Iseki, H., Takakura, K.: Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J. Image Guid. Surg. 1(4), 242–248 (1995)CrossRefGoogle Scholar
  4. 4.
    Felden, A., Vagner, J., Hinz, A., Fischer, H., Pfleiderer, S.O., Reichenbach, J.R., Kaiser, W.A.: ROBITOM-robot for biopsy and therapy of the mamma. Biomed. Tech (Berl) 47 (Suppl. 1 Pt. 1), 2–5 (2002)CrossRefGoogle Scholar
  5. 5.
    Hempel, E., Fischer, H., Gumb, L., Höhn, T., Krause, H., Voges, U., Breitwieser, H., Gutmann, B., Durke, J., Bock, M., Melzer, A.: An MRI-compatible surgical robot for precise radiological interventions. In: CAS, April 2003, pp. 180–191 (2003)Google Scholar
  6. 6.
    DiMaio, S.P., Pieper, S., Chinzei, K., Fichtinger, G., Tempany, C., Kikinis, R.: Robot assisted percutaneous intervention in open-MRI. In: MRI Symp., p. 155 (2004)Google Scholar
  7. 7.
    Krieger, A., Susil, R.C., Menard, C., Coleman, J.A., Fichtinger, G., Atalar, E., Whitcomb, L.L.: Design of a novel MRI compatible manipulator for image guided prostate interventions. In: IEEE TBME, February 2005, vol. 52, pp. 306–313 (2005)Google Scholar
  8. 8.
    Fischer, G.S., DiMaio, S.P., Iordachita, I., Fichtinger, G.: Development of a Robotic Assistant for Needle-Based Transperineal Prostate Interventions in MRI. In: MICCAI, November 2007, vol. 4791, pp. 425–433 (2007)Google Scholar
  9. 9.
    Taillant, E., Avila-Vilchis, J., Allegrini, C., Bricault, I., Cinquin, P.: CT and MR Compatible Light Puncture Robot: Architectural Design and First Experiments. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 145–152. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Curiel, L., Chopra, R., Hynynen, K.: P2d-7 simultaneous us/mr imaging. In: Chopra, R. (ed.) Proc. IEEE Ultrasonics Symposium, pp. 1643–1646 (2006)Google Scholar
  11. 11.
    Gassert, R., Vanello, N., Chapuis, D., Hartwig, V., Scilingo, E., Bicchi, A., Landini, L., Burdet, E., Bleuler, H.: Active mechatronic interface for haptic perception studies with functional magnetic resonance imaging: compatibility and design criteria. In: ICRA 2006, pp. 3832–3837 (2006)Google Scholar
  12. 12.
    Stoianovici, D., Patriciu, A., Petrisor, D., Mazilu, D., Kavoussi, L.: A New Type of Motor: Pneumatic Step Motor. IEEE/ASME Trans. Mechatronics 12(1), 98–106 (2007)CrossRefGoogle Scholar
  13. 13.
    Suzuki, T., Liao, H., Kobayashi, E., Sakuma, I.: Ultrasonic motor driving method for EMI-free image in MR image-guided surgical robotic system. In: IEEE IROS, pp. 522–527 (2007)Google Scholar
  14. 14.
    Elhawary, H., Zivanovic, A., Rea, M., Davies, B., Besant, C., McRobbie, D., de Souza, N., Young, I., Lampérth, M.: The feasibility of mr-image guided prostate biopsy using piezoceramic motors. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 519–526. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    The Association of Electrical and Medical Imaging Equipment Manufacturers: Determination of Signal-to-Noise Ratio (SNR) in Diagnostic Magnetic Resonance Imaging, NEMA Standard Publication MS 1-2008 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gregory S. Fischer
    • 1
  • Axel Krieger
    • 1
  • Iulian Iordachita
    • 1
  • Csaba Csoma
    • 1
  • Louis L. Whitcomb
    • 1
  • Gabor Fichtinger
    • 1
    • 2
  1. 1.Center for Computer Integrated SurgeryJohns Hopkins UniversityUSA
  2. 2.School of ComputingQueens UniversityKingstonCanada

Personalised recommendations