Advertisement

Quantification of Edematic Effects in Prostate Brachytherapy Interventions

  • Mohamed Hefny
  • Purang Abolmaesumi
  • Zahra Karimaghaloo
  • David G. Gobbi
  • Randy Ellis
  • Gabor Fichtinger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5242)

Abstract

We present a quantitative model to analyze the detrimental effects of edema on the quality of prostate brachytherapy implants. We account for both tissue expansion and implant migration by mapping intra-operative ultrasound and post-implant CT. We pre-process the ultrasound with a phase congruency filter, and map it to the volume CT using a B-spline deformable mutual information similarity metric. To test the method, we implanted a standard training phantom with 48 seeds, imaged the phantom with ultrasound and CT and registered the two for ground truth. Edema was simulated by distorting the CT volume by known transformations. The objective was to match the distorted implant to the intra-operative ultrasound. Performance was measured relative to ground truth. We successfully mapped 100% of deformed seeds to ground truth under edematic expansion up to 40% of volume growth. Seed matching performance was 98% with random seed migration of 3mm superimposed on 10% edematic volume growth. This method promises to be clinically applicable as the first quantitative analysis tool to measure edematic implant deformations occurring between the operating room and post-operative CT imaging.

Keywords

Registration Error Prostate Brachytherapy Phase Congruency Seed Migration Capture Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jemal, A., et al.: Cancer statistics. CA Cancer J. Clin. 57(1), 43–66 (2007)CrossRefGoogle Scholar
  2. 2.
    Wallner, K., et al.: Prostate brachytherapy made complicated, 2nd edn. SmartMedicine Press, Seattle (WA) (2001)Google Scholar
  3. 3.
    Cooperberg, M.R., et al.: The changing face of low-risk prostate cancer: trends in clinical presentation and primary management. J. Clin. Oncol. 1;22(11), 2141–2149 (2004)CrossRefGoogle Scholar
  4. 4.
    Yamada, Y., et al.: Impact of intraoperative edema during transperineal permanent prostate brachytherapy on computer-optimized and preimplant planning techniques. Am. J. Clin. Oncol. 26(5), e130–135 (2003)CrossRefGoogle Scholar
  5. 5.
    Roberson, P.L., et al.: Source placement error for permanent implant of the prostate. Med. Phys. 24, 251–257 (1997)CrossRefGoogle Scholar
  6. 6.
    Tanaka, O., et al.: Effect of edema on postimplant dosimetry in prostate brachytherapy using CT/MRI fusion. Int. J. Radiat. Oncol. Biol. Phys. 69, 614–618 (2007)CrossRefGoogle Scholar
  7. 7.
    Waterman, F.M., et al.: Edema associated with I-125 or Pd-103 prostate brachytherapy and its impact on post-implant dosimetry: An analysis based on serial CT acquisition. Int. J. Radiat. Oncol. Biol. Phys. 41, 1069–1077 (1998)CrossRefGoogle Scholar
  8. 8.
    Prestidge, A.R., et al.: Timing of computed tomography-based postimplant assessment following permanent transperineal prostate brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 40, 1111–1115 (1998)CrossRefGoogle Scholar
  9. 9.
    Su, Y., et al.: Seed localization and TRUS-fluoroscopy fusion for intraoperative prostate brachytherapy dosimetry. Computer Aided Surgery 12(1), 25–34 (2007)CrossRefGoogle Scholar
  10. 10.
    Tutar, I.B., et al.: Seed-based ultrasound and fluoroscopy registartion using iterative optimal assignment for intraoperative prostate brachytherapy dosimetry. In: SPIE Medical Imaging, pp. 65091–650914 (2004)Google Scholar
  11. 11.
    Hacihalilogu, I., et al.: Enhancement of bone surface visualization from 3D ultrasound based on local phase information. In: IEEE Ultrasonics Symp., pp. 21–24 (2006)Google Scholar
  12. 12.
    Kovesi, P.: Image feature from phase congruency. In: Vider: A. J. of Comp. Vision Research, vol. 1(3), pp. 1–27. MIT press, Cambridge (1999)Google Scholar
  13. 13.
    Mercier, L., et al.: A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound Med. Biol. 31(4), 449–471 (2005)CrossRefGoogle Scholar
  14. 14.
    Kim, Y., et al.: Dosimetric Impact of Prostate Volume Change Between CT-Based HDR Brachytherapy Fractions. Int. J. Radiat. Oncol. Biol. Phys. 59(4), 1208–1216 (2004)CrossRefGoogle Scholar
  15. 15.
    Amink, R., et al.: Planimetric volumetry of the prostate: how accurate is it? Physiol. Meas. 16, 141–150 (1995)CrossRefGoogle Scholar
  16. 16.
    Jain, A.K., et al.: Intra-operative Guidance in Prostate Brachytherapy Using an Average C-arm. In: Ayache, N., et al. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 9–16. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Karimaghaloo, Z., et al.: Intensity-Based Registration of Prostate Brachytherapy Implants and Ultrasound. In: 5th IEEE Int. Symp. on Biomed. Imag., pp. 780–783 (2008)Google Scholar
  18. 18.
    Yue, N., et al.: The impact of edema on planning 125I and 103Pd prostate implants. Med. Phys. 26, 763–767 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mohamed Hefny
    • 1
  • Purang Abolmaesumi
    • 1
  • Zahra Karimaghaloo
    • 1
  • David G. Gobbi
    • 1
  • Randy Ellis
    • 1
  • Gabor Fichtinger
    • 1
  1. 1.School of ComputingQueen’s UniversityKingstonCanada

Personalised recommendations