Probabilistic Anatomo-Functional Parcellation of the Cortex: How Many Regions?

  • Alan Tucholka
  • Bertrand Thirion
  • Matthieu Perrot
  • Philippe Pinel
  • Jean-François Mangin
  • Jean-Baptiste Poline
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5242)

Abstract

Understanding brain structure and function entails the inclusion of anatomical and functional information in a common space, in order to study how these different informations relate to each other in a population of subjects. In this paper, we revisit the parcellation model and explicitly combine anatomical features, i.e. a segmentation of the cortex into gyri, with a functional information under the form of several cortical maps, which are used to further subdivide the gyri into functionally consistent regions. A probabilistic model is introduced, and the parcellation model is estimated using a Variational Bayes approach. The number of regions in the model is validated based on cross-validation. It is found that about 250 patches of cortex can be delineated both in the left and right hemisphere based on this procedure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis. ii: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 (1999)CrossRefGoogle Scholar
  2. 2.
    Clouchoux, C., Coulon, O., Rivière, D., Cachia, A., et al.: Anatomically constrained surface parameterization for cortical localization. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 344–351. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., et al.: Automatically parcellating the human cerebral cortex. Cereb Cortex 14, 11–22 (2004)CrossRefGoogle Scholar
  4. 4.
    Clouchoux, C., Coulon, O., Anton, J.L., Mangin, J.F., et al.: A new cortical surface parcellation model and its automatic implementation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 193–200. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Neumann, J., von Cramon, D.Y., Forstmann, B.U., et al.: The parcellation of cortical areas using replicator dynamics in fMRI. Neuroimage 32, 208–219 (2006)CrossRefGoogle Scholar
  6. 6.
    Thirion, B., et al.: Dealing with the shortcomings of spatial normalization: multi-subject parcellation of fMRI datasets. Hum. Brain Mapp. 27, 678–693 (2006)CrossRefGoogle Scholar
  7. 7.
    Golland, P., Golland, Y., Malach, R.: Detection of spatial activation patterns as unsupervised segmentation of fMRI data. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 110–118. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Brett, M., Johnsrude, I.S., Owen, A.M.: The problem of functional localization in the human brain. Nat. Rev. Neurosci. 3, 243–249 (2002)CrossRefGoogle Scholar
  9. 9.
    Devlin, J.T., Poldrack, R.A.: In praise of tedious anatomy. Neuroimage 37, 1033–41; discussion 1050–8 (2007)Google Scholar
  10. 10.
    Woolrich, M.W., Behrens, T.E.: Variational bayes inference of spatial mixture models for segmentation. Trans. Med. Imaging 25, 1380–1391 (2006)CrossRefGoogle Scholar
  11. 11.
    Thyreau, B., Thirion, B., Flandin, G., et al.: Anatomo-functional description of the brain: A probabilistic approach. In: ICASSP, pp. V–V (2006) Google Scholar
  12. 12.
    Pinel, P., Thirion, B., Meriaux, S., Jobert, A., Serres, J., Bihan, D.L., Poline, J.B., Dehaene, S.: Fast reproducible identification and large-scale databasing of individual functional cognitive networks. BMC Neurosci. 8, 91 (2007)CrossRefGoogle Scholar
  13. 13.
    Perrot, M., Rivière, D., Mangin, J.F.: Identifying cortical sulci from localizations, shape and local organization. In: 5th ISBI, Paris, France, pp. 420–423 (2008)Google Scholar
  14. 14.
    Operto, G., Bulot, R., et al.: Projection of fMRI data onto the cortical surface using anatomically-informed convolution kernels. Neuroimage 39, 127–135 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alan Tucholka
    • 1
    • 2
  • Bertrand Thirion
    • 2
  • Matthieu Perrot
    • 1
  • Philippe Pinel
    • 3
  • Jean-François Mangin
    • 1
  • Jean-Baptiste Poline
    • 1
  1. 1.CEA SaclayNeurospin/LNAO, Bât 145Gif-sur-Yvette cedexFrance
  2. 2.INRIA Saclay-Île-de-FranceParietalFrance
  3. 3.INSERM UNICOG, NeurospinParisFrance

Personalised recommendations