Advertisement

Fully Bayesian Joint Model for MR Brain Scan Tissue and Structure Segmentation

  • Benoit Scherrer
  • Florence Forbes
  • Catherine Garbay
  • Michel Dojat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5242)

Abstract

In most approaches, tissue and subcortical structure segmentations of MR brain scans are handled globally over the entire brain volume through two relatively independent sequential steps. We propose a fully Bayesian joint model that integrates local tissue and structure segmentations and local intensity distributions. It is based on the specification of three conditional Markov Random Field (MRF) models. The first two encode cooperations between tissue and structure segmentations and integrate a priori anatomical knowledge. The third model specifies a Markovian spatial prior over the model parameters that enables local estimations while ensuring their consistency, handling this way nonuniformity of intensity without any bias field modelization. The complete joint model provides a sound theoretical framework for carrying out tissue and structure segmentation by distributing a set of local and cooperative MRF models. The evaluation, using a previously affine-registred atlas of 17 structures and performed on both phantoms and real 3T brain scans, shows good results.

Keywords

Expectation Maximization Markov Random Field Conditional Model Tissue Class Tissue Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

978-3-540-85990-1_128_MOESM1_ESM.wmv (12.3 mb)
Electronic Supplementary Material (12,545 KB)

References

  1. 1.
    Shattuck, D., et al.: Magnetic resonance image tissue classification using a partial volume model. Neuro. Image 13(5), 856–876 (2001)Google Scholar
  2. 2.
    Rajapakse, J.C., Giedd, J.N., Rapoport, J.L.: Statistical approach to segmentation of single-channel cerebral MR images. IEEE TMI 16(2), 176–186 (1997)Google Scholar
  3. 3.
    Scherrer, B., Dojat, M., Forbes, F., Garbay, C.: LOCUS: LOcal Cooperative Unified Segmentation of MRI brain scans. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, Springer, Heidelberg (2007)Google Scholar
  4. 4.
    Byrne, W., Gunawardana, A.: Convergence theorems of Generalized Alternating Minimization Procedures. J. Machine Learning Research 6, 2049–2073 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Kumar, S., Hebert, M.: Discriminative random fields. Int. J. Comput. Vision 68(2), 179–201 (2006)CrossRefGoogle Scholar
  6. 6.
    Gelman, A., et al.: Bayesian Data Analysis, 2nd edn. Chapman and Hall, Boca Raton (2004)zbMATHGoogle Scholar
  7. 7.
    Besag, J.: On the statistical analysis of dirty pictures. J. Roy. Statist. Soc. Ser. B 48(3), 259–302 (1986)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. Roy. Statist. Soc. Ser. B 36(2), 192–236 (1974)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Pohl, K.M., Fisher, J., Grimson, W.E.L., Kikinis, R., Wells, W.M.: A Bayesian model for joint segmentation and registration. Neuro. Image 31(1), 228–239 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Benoit Scherrer
    • 1
    • 3
    • 4
  • Florence Forbes
    • 2
    • 4
  • Catherine Garbay
    • 3
    • 4
  • Michel Dojat
    • 1
    • 4
  1. 1.INSERM, U836GrenobleFrance
  2. 2.INRIA, MISTISGrenobleFrance
  3. 3.CNRS, MAGMAGrenobleFrance
  4. 4.Université Joseph FourierGrenobleFrance

Personalised recommendations