Cell Spreading Analysis with Directed Edge Profile-Guided Level Set Active Contours

  • Ilker Ersoy
  • Filiz Bunyak
  • Kannappan Palaniappan
  • Mingzhai Sun
  • Gabor Forgacs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5241)


Cell adhesion and spreading within the extracellular matrix (ECM) plays an important role in cell motility, cell growth and tissue organization. Measuring cell spreading dynamics enables the investigation of cell mechanosensitivity to external mechanical stimuli, such as substrate rigidity. A common approach to measure cell spreading dynamics is to take time lapse images and quantify cell size and perimeter as a function of time. In our experiments, differences in cell characteristics between different treatments are subtle and require accurate measurements of cell parameters across a large population of cells to ensure an adequate sample size for statistical hypothesis testing. This paper presents a new approach to estimate accurate cell boundaries with complex shapes by applying a modified geodesic active contour level set method that directly utilizes the halo effect typically seen in phase contrast microscopy. Contour evolution is guided by edge profiles in a perpendicular direction to ensure convergence to the correct cell boundary. The proposed approach is tested on bovine aortic endothelial cell images under different treatments, and demonstrates accurate segmentation for a wide range of cell sizes and shapes compared to manual ground truth.


Active Contour Cell Boundary Cell Spreading Actual Boundary Time Lapse Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aplin, A., Hogan, B., Tomeu, J., Juliano, R.: Cell adhesion differentially regulates the nucleocytoplasmic distribution of active map kinases. J. Cell Sci. 115, 2781–2790 (2002)Google Scholar
  2. 2.
    Parker, K., Brock, A., Brangwynne, C., Mannix, R., Wang, N., Ostuni, E., Geisse, N., Adams, J., Whitesides, G., Ingber, D.: Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J. 16, 1195–1204 (2002)CrossRefGoogle Scholar
  3. 3.
    Sun, M., Northup, N., Marga, F., Huber, T., Byfield, F., Levitan, I., Forgacs, G.: The effect of cellular cholesterol on membrane-cytoskeleton adhesion. J. Cell Sci. 120, 2223–2231 (2007)CrossRefGoogle Scholar
  4. 4.
    Wang, X., He, W., Metaxas, D., Matthew, R., White, E.: Cell segmentation and tracking using texture-adaptive snakes. In: Proc. 4th IEEE Int. Symp. Biomed. Imaging (ISBI), pp. 101–104. IEEE Comp. Soc., Los Alamitos (2007)CrossRefGoogle Scholar
  5. 5.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. of Comp. Vision 22, 61–79 (1997)zbMATHCrossRefGoogle Scholar
  6. 6.
    Sethian, J.: Level Set Methods and Fast Marching Methods, 2nd edn. Cambridge Univ. Press, Cambridge (1999)zbMATHGoogle Scholar
  7. 7.
    Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process 10, 266–277 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Nath, S., Palaniappan, K., Bunyak, F.: Cell segmentation using coupled level sets and graph-vertex coloring. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 101–108. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Bunyak, F., Palaniappan, K., Nath, S.K., Baskin, T.I., Dong, G.: Quantitative cell motility for in vitro wound healing using level set-based active contour tracking. In: Proc. 3rd IEEE Int. Symp. Biomed. Imaging (ISBI), pp. 1040–1043. IEEE Comp. Soc., Los Alamitos (2006)CrossRefGoogle Scholar
  10. 10.
    Palaniappan, K., Ersoy, I., Nath, S.: Moving object segmentation using the flux tensor for biological video microscopy. In: Ip, H.H.-S., Au, O.C., Leung, H., Sun, M.-T., Ma, W.-Y., Hu, S.-M. (eds.) PCM 2007. LNCS, vol. 4810, pp. 483–493. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Yan, P., Zhou, X., Shah, M., Wong, S.: Automatic segmentation of high throughput RNAi fluorescent cellular images. IEEE Trans. Inf. Tech. Biom. 12, 109–117 (2008)CrossRefGoogle Scholar
  12. 12.
    Eberly, D.: Ridges in Image and Data Analysis. Kluwer Academic Publishers, Dordrecht (1996)zbMATHGoogle Scholar
  13. 13.
    Lopez, A., Lumbreras, F., Serrat, J., Villanueva, J.: Evaluation of methods for ridge and valley detection. IEEE Trans. PAMI 21, 327–335 (1999)Google Scholar
  14. 14.
    Besl, P.J., Jain, R.C.: Segmentation through variable-order surface fitting. IEEE Trans. PAMI 10, 167–192 (1988)Google Scholar
  15. 15.
    Bronshtein, I., Semendyayev, K.: 4.3 Differential Geometry. In: Handbook of mathematics, 3rd edn. Springer, London (1997)Google Scholar
  16. 16.
    Staal, J., Abràmoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23, 501–509 (2004)CrossRefGoogle Scholar
  17. 17.
    Zhou, J., Chang, S., Metaxas, D., Axel, L.: Vessel boundary extraction using ridge scan-conversion deformable model. In: Proc. 3rd IEEE Int. Symp. Biomed. Imaging (ISBI), pp. 189–192. IEEE Comp. Soc., Los Alamitos (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ilker Ersoy
    • 1
  • Filiz Bunyak
    • 1
  • Kannappan Palaniappan
    • 1
  • Mingzhai Sun
    • 2
  • Gabor Forgacs
    • 2
  1. 1.Department of Computer Science  
  2. 2.Department of Physics and AstronomyUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations