Advertisement

Automatic Subcortical Segmentation Using a Contextual Model

  • Jonathan H. Morra
  • Zhuowen Tu
  • Liana G. Apostolova
  • Amity E. Green
  • Arthur W. Toga
  • Paul M. Thompson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5241)

Abstract

Automatically segmenting subcortical structures in brain images has the potential to greatly accelerate drug trials and population studies of disease. Here we propose an automatic subcortical segmentation algorithm using the auto context model. Unlike many segmentation algorithms that separately compute a shape prior and an image appearance model, we develop a framework based on machine learning to learn a unified appearance and context model. We trained our algorithm to segment the hippocampus and tested it on 83 brain MRIs (of 35 Alzheimer’s disease patients, 22 with mild cognitive impairment, and 26 normal healthy controls). Using standard distance and overlap metrics, the auto context model method significantly outperformed simpler learning-based algorithms (using AdaBoost alone) and the FreeSurfer system. In tests on a public domain dataset designed to validate segmentation [1] , our new algorithm also greatly improved upon a recently-proposed hybrid discriminative/generative approach [2], which was among the top three that performed comparably in a recent head-to-head competition.

Keywords

Mild Cognitive Impairment Training Image Context Model Subcortical Structure Weak Learner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    van Ginneken, B., Heimann, T., Styner, M.: 3D Segmentation in the Clinic: A Grand Challenge. In: Proc. of MICCAI Workshop (2007)Google Scholar
  2. 2.
    Tu, Z., Narr, K., Dinov, I., Dollár, P., Thompson, P., Toga, A.: Brain anatomical structure parsing by hybrid discriminative/generative models. IEEE TMI (2008)Google Scholar
  3. 3.
    Fischl, B., et al.: Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neurotechnique 33, 341–355 (2002)Google Scholar
  4. 4.
    Yang, J., Staib, L.H., Duncan, J.S.: Neighbor-constrained segmentation with level set based 3D deformable models. IEEE TMI 23(8), 940–948 (2004)Google Scholar
  5. 5.
    Pohl, K., Fisher, J., Kikinis, R., Grimson, W., Wells, W.: A Bayesian model for joint segmentation and registration. NeuroImage 31(1), 228–239 (2006)CrossRefGoogle Scholar
  6. 6.
    Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33(1), 115–126 (2006)CrossRefGoogle Scholar
  7. 7.
    Powell, S., Magnotta, V., Johnson, H., Jammalamadaka, V., Pierson, R., Andreasen, N.: Registration and machine learning based automated segmentation of subcortical and cerebellar brain structures. NeuroImage 39(1), 238–247 (2008)CrossRefGoogle Scholar
  8. 8.
    Oliva, A., Torralba, A.: The role of context in object recognition. Trends in Cognitive Sciences 11(12), 520–527 (2007)CrossRefGoogle Scholar
  9. 9.
    Becker, J., Davis, S., Hayashi, K., Meltzer, C., Lopez, O., Toga, A., Thompson, P.: 3D patterns of hippocampal atrophy in mild cognitive impairment. Archives of Neurology 63(1), 97–101 (2006)CrossRefGoogle Scholar
  10. 10.
    Collins, D., Neelin, P., Peters, T.M., Evans, A.C.: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J. Comput. Assist Tomogr. 18, 192–205 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jonathan H. Morra
    • 1
  • Zhuowen Tu
    • 1
  • Liana G. Apostolova
    • 1
    • 2
  • Amity E. Green
    • 1
    • 2
  • Arthur W. Toga
    • 1
  • Paul M. Thompson
    • 1
  1. 1.Laboratory of Neuro Imaging, UCLA School of Medicine Los AngelesUSA
  2. 2.UCLA Dept. Neurology and Alzheimer’s Disease Research Center Los AngelesUSA

Personalised recommendations