Automatic Recovery of the Left Ventricular Blood Pool in Cardiac Cine MR Images

  • Marie-Pierre Jolly
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5241)

Abstract

We present a method for automatic localization and rough segmentation of the left ventricle blood pool in cardiac cine magnetic resonance images. The method first detects the whole heart using time-based Fourier analysis. It then segments the left ventricle blood pool by grouping connected components across slices using isoperimetric clustering. The system was tested on 253 datasets and failed in only 2 cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lorenzo-Valdés, M., Sanchez-Ortiz, G.I., Elkington, A.G., Mohiaddin, R.H., Rueckert, D.: Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Medical Image Analysis 8, 255–265 (2004)CrossRefGoogle Scholar
  2. 2.
    Mitchell, S.C., Lelieveldt, B.P.F., van der Geest, R.J., Bosch, H.G., Reiber, J.H.C., Sonka, M.: Multistage hybrid active appearance model matching: Segmentation of the left and right ventricles in cardiac mr images. IEEE Trans. Medical Imaging 20(5), 415–423 (2001)CrossRefGoogle Scholar
  3. 3.
    Jolly, M.P.: Automatic segmentation of the left ventricle in cardiac MR and CT images. International Journal of Computer Vision 70(2), 151–163 (2006)CrossRefGoogle Scholar
  4. 4.
    Kaus, M.R., von Berg, J., Weese, J., Niessen, W., Pekar, V.: Automated segmentation of the left ventricle in cardiac MRI. Medical Image Analysis 8, 245–254 (2004)CrossRefGoogle Scholar
  5. 5.
    Gering, D.: Automatic segmentation of cardiac MRI. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 524–532. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Phumeechanya, S., Pluempitiwiriyawej, C.: Left ventricular segmentation using double region-based snakes. In: Proc. ISBI, pp. 840–843 (2007)Google Scholar
  7. 7.
    Cocosco, C.A., Niessen, W.J., Netsch, T., Vonken, E.P.A., Viergever, M.A.: Automatic image-driven segmentation of cardiac ventricles in cine anatomical MRI. In: Proc. SPIE Applications of Digital Image Processing, vol. 5909, pp. 1–11 (1995)Google Scholar
  8. 8.
    Lin, X., Cowan, B.R., Young, A.A.: Automated detection of left ventricle in 4D MR images: Experience from a large study. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 728–735. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Systems, Man and Cybernetics 9, 62–66 (1979)CrossRefGoogle Scholar
  10. 10.
    Grady, L., Schwartz, E.L.: Isoperimetric partitioning: A new algorithm for graph partitioning. SIAM Journal on Scientific Computing 27(6), 1844–1866 (2006)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marie-Pierre Jolly
    • 1
  1. 1.Siemens Corporate Research, Imaging and Visualization Dept. Princeton 

Personalised recommendations