Advertisement

Surface-Based Vector Analysis Using Heat Equation Interpolation: A New Approach to Quantify Local Hippocampal Volume Changes

  • Hosung Kim
  • Pierre Besson
  • Olivier Colliot
  • Andrea Bernasconi
  • Neda Bernasconi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5241)

Abstract

Analysis of surface-based displacement vectors using spherical harmonic description (SPHARM) localizes shape changes accurately. However, it does not allow differentiating volume variations from shifting and/or bending. We propose a new approach to quantify local volume changes by computing the surface-based Jacobian determinant. This measurement is computed on the displacement vector fields estimated by a heat equation interpolation on the displacement vectors produced by SPHARM. Data simulation showed that the surface-based Jacobian determinant enables accurate quantification of local volume changes without interference of shifting/bending. In patients with temporal lobe epilepsy and left hippocampal atrophy, SPHARM detected widespread inward deformation related to atrophy in the hippocampal head and body, and showed areas of mirrored inward/outward deformations mostly at the level of the hippocampal tail. In these areas, the surface-based Jacobian determinant showed atrophy. Our method facilitates the interpretation of SPHARM because it allows decomposing volume changes and shifting/bending. Furthermore, it provides a better delineation of the extent of hippocampal atrophy.

Keywords

brain morphometry shape analysis Jacobian analysis heat equation hippocampus 

References

  1. 1.
    Hogan, R.E., et al.: MRI-based high-dimensional hippocampal mapping in mesial temporal lobe epilepsy. Brain 127, 1731–1740 (2004)CrossRefGoogle Scholar
  2. 2.
    Csernansky, J.G., et al.: Early DAT is distinguished from aging by high-dimensional mapping of the hippocampus. Neurology 55, 1636–1643 (2000)Google Scholar
  3. 3.
    Styner, M., et al.: Boundary and medial shape analysis of the hippocampus in schizophrenia. Medical Image Analysis 8, 197–203 (2004)CrossRefGoogle Scholar
  4. 4.
    Styner, M., et al.: Statistical Shape Analysis of Brain Structures using SPHARM-PDM. In: MICCAI 2006 Opensource workshop (2006)Google Scholar
  5. 5.
    Chung, M.K., et al.: A unified statistical approach to deformation-based morphometry. NeuroImage 14, 595–606 (2001)CrossRefGoogle Scholar
  6. 6.
    Ashburner, J., Friston, K.J.: Voxel-based morphometry: the methods. NeuroImage 11, 805–821 (2000)CrossRefGoogle Scholar
  7. 7.
    Janke, A.L., et al.: 4D deformation modeling of cortical disease progression in Alzheimer’s dementia. Magnetic Resonance in Medicine 46, 661–666 (2001)CrossRefGoogle Scholar
  8. 8.
    Douglas Jr., J., Rachford Jr., H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc. 82, 421–439 (1956)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hosung Kim
    • 1
  • Pierre Besson
    • 1
  • Olivier Colliot
    • 1
  • Andrea Bernasconi
    • 1
  • Neda Bernasconi
    • 1
  1. 1.Department of Neurology and Brain Imaging CenterMcGill University, Montreal Neurological Institute and HospitalMontrealCanada

Personalised recommendations