Retinal Fundus Biometric Analysis for Personal Identifications

  • Vitoantonio Bevilacqua
  • Lucia Cariello
  • Donatello Columbo
  • Domenico Daleno
  • Massimiliano Dellisanti Fabiano
  • Marco Giannini
  • Giuseppe Mastronardi
  • Marcello Castellano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5227)

Abstract

In this paper a biometric system for personal identification, realized through the manipulation of retinal fundus images and the detection of its bifurcation points, is described. In the image pre-processing step, a strong contrast exaltation between blood vessels and the background in retinal image is carried out; then blood vessels are extracted and next the vasculature bifurcation and crossover points are identified within squared shaped regions used to window the image. Finally the features sets are compared with a pattern recognition algorithm and a novel formulation is introduced to evaluate a similarity score and to obtain the personal identification.

Keywords

personal identification retinal fundus blood vessels detection vasculature bifurcation and crossover points extraction clustering algorithm Naka-Rushton filter Generalized Hough Transform pattern recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A., Bolle, R., Pankanti, S.: Biometrics: Personal Identification in Networked Society, p. 123. Springer Science/Business Media, New York (1996)Google Scholar
  2. 2.
    Wilson, C.L., McCabe, R.M.: Simple Test Procedure for Image-based Biometric Verification Systems. NISTIR 6336, National Institute of Standards and Technology (1999), http://www.itl.nist.gov/iaui/894.03/pubs.htm
  3. 3.
    Tower, P.: The Fundus Oculi in Monozygotic Twins: Report of Six Pairs of Identical Twins. Archives of Ophthalmology 54, 225–239 (1955)Google Scholar
  4. 4.
    Simon, C., Goldstein, I.: A New Scientific Method of Identification. New York State Journal of Medicine 35(18), 901–906 (1935)Google Scholar
  5. 5.
    Kresimir, D.I., Mislav, G.: A Survey of Biometric Recognition Methods. In: 46th International SyrnPoSium Electronics in Marine, ELMAR-2004, Zadar, Croatia (2004)Google Scholar
  6. 6.
    Naka, K.I., Rushton, W.A.: S-potentials from Luminosity Units in the Retina of fish (Cyprinidae). Journal of Physiology 185, 587–599 (1966)Google Scholar
  7. 7.
    Bevilacqua, V., Cariello, L., Cambò, S., Daleno, D., Mastronardi, G.: Retinal Fundus Features Hybrid Detection based on a Genetic Algorithm. In: Proceedings of the Workshop on Medical Applications of Genetic and Evolutionary Computation (MedGEC), Seattle (USA) (2005)Google Scholar
  8. 8.
    Steger, C.: An Unbiased Detector of Curvilinear Structures. Proceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence 20(2) (1998)Google Scholar
  9. 9.
    Ballard, D.H.: Generalizing the Hough Transform to detect arbitrary shapes. Pattern Recognition 13, 111–122 (1981)MATHCrossRefGoogle Scholar
  10. 10.
    Mastronardi, G., Daleno, D., Bevilacqua, V., Chiaia, G.: Tecniche di identificazione personale basate sulla trasformata generalizzata di Hough applicata a nuvole di punti. In: Proceedings of National Conf. AICA 2007 (Associazione italiana per l’informatica ed il calcolo distribuito), Milano (Italy) (2007) ISBN 88-901620-3-1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Vitoantonio Bevilacqua
    • 1
    • 2
  • Lucia Cariello
    • 1
    • 2
  • Donatello Columbo
    • 1
  • Domenico Daleno
    • 1
    • 2
  • Massimiliano Dellisanti Fabiano
    • 3
  • Marco Giannini
    • 4
  • Giuseppe Mastronardi
    • 1
    • 2
  • Marcello Castellano
    • 1
    • 2
  1. 1.Department of Electrical and ElectronicsPolytechnic of BariBariItaly
  2. 2.e.B.I.S. s.r.l. (electronic Business in Security)Spin-Off of Polytechnic of BariValenzano (BA)Italy
  3. 3.Digital Future Engineering BariItaly
  4. 4.Centro Laser s.c.a.r.l. Valenzano (BA)Italy

Personalised recommendations