Automatic Facial Feature Points Detection

  • Vitoantonio Bevilacqua
  • Alessandro Ciccimarra
  • Ilenia Leone
  • Giuseppe Mastronardi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5227)


This paper presents an algorithm which detects automatically the feature points in a face image. This is a fundamental task in many applications, in particular in an automatic face recognition system. Starting from a frontal face image with a plain background we have effected an image segmentation to detect the different facial components (eyebrow, eyes, nose, mouth and chin). After this we have searched for the feature points of each face component. The algorithm has been tested on 320 face images taken from the Stirling University Face Database [10]. The points extracted in this way have been used in a face recognition algorithm based on the Hough transform.


facial features points face recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face Recognition: A Literature Survey. ACM Computing Surveys (2003)Google Scholar
  2. 2.
    Heisele, B., Ho, P., Poggio, T.: Face Recognition with Support Vector Machines: Global versus Component-based Approach. In: Proceedings of IEEE International Conference on Computer Vision (ICCV 2001) (2001)Google Scholar
  3. 3.
    Lanzarotti, R.: Facial Features Detection and Description, Master thesis, Università degli studi di Milano (2003)Google Scholar
  4. 4.
    Mavrinac, A.: Competitive Learning Techniques for Color Image Segmentation. Machine Learning and Computer Vision (2007)Google Scholar
  5. 5.
    Lewis, J.P.: Fast Normalized Cross Correlation. Industrial Light and Magic (1995)Google Scholar
  6. 6.
    Hsu, C., Chang, C., Lin, C.: A Practical Guide to Support Vector Classification (2007)Google Scholar
  7. 7.
    Feng, G.C., Yuen, P.C.: Variance Projection Function and Its Application to Eye Detection for Human Face Recognition. Pattern Recognition Letters (1998)Google Scholar
  8. 8.
    Vezhnevets, V., Degtiareva, A.: Robust and Accurate Eye Contour Extraction. In: Proc. Graphicon (2003)Google Scholar
  9. 9.
    Kienzle, W., Bakir, G., Franz, M., Scholkopf, B.: Face Detection - Efficient and Rank Deficient. Advances in Neural Information Processing Systems (2005)Google Scholar
  10. 10.
    Stirling University Face Database,
  11. 11.
    Feng, G.C., Yuen, P.C.: Variance Projection Function and Its Application to Eye Detection for Human Face Recognition. Pattern Recognition Letters (1998)Google Scholar
  12. 12.
    Wu, J., Zhou, Z.: Efficient Face Candidates Selector for Face Detection (2002)Google Scholar
  13. 13.
    Sung, K.K., Poggio, T.: Example-based Learning for View-based Human Face Detection. IEEE Trans. Pattern Analysis and Machine Intelligence (1998)Google Scholar
  14. 14.
    Mastronardi, G., Daleno, D., Bevilacqua, V., Chiaia, G.: Tecniche di identificazione personale basate sulla trasformata generalizzata di Hough applicata a nuvole di punti- Congresso Nazionale. AICA 2007 - Cittadinanza e Democrazia Digitale, Milano, September 20–21 (2007)Google Scholar
  15. 15.
    Wiskott, L., Fellous, J., Kruger, N., Malsburg, C.: Face Recognition by Elastic Bunch Graph Matching. Intelligent Biometric Techniques in Fingerprint and Face Recognition (1999)Google Scholar
  16. 16.
    Mian, A., Bennamoun, M., Owens, R.: An Efficient Multi-modal 2D-3D Hybrid Approach to Automatic Face Recognition. IEEE Trans. Pattern Analysis and Machine Intelligence (2007)Google Scholar
  17. 17.
    Canny, J.: A Computational Approach to Edge Detection. IEEE Trans. PAMI 8(6) (1986)Google Scholar
  18. 18.
    Ciccimarra, A.: Ricerca Automatica dei punti caratteristici del volto. First Level Degree Thesis (2008)Google Scholar
  19. 19.
    Delac, K., Grgic, M.: A Survey of Biometric Recognition Systems (2004)Google Scholar
  20. 20.
    Bevilacqua, V., Cariello, L., Carro, G., Daleno, D., Mastronardi, G.: A Face Recognition System Based on Pseudo 2D HMM Applied to Neural Network Coefficients. Soft Comput. 12(7), 615–621 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Vitoantonio Bevilacqua
    • 1
    • 2
  • Alessandro Ciccimarra
    • 1
  • Ilenia Leone
    • 1
  • Giuseppe Mastronardi
    • 1
    • 2
  1. 1.Dipartimento di Elettrotecnica ed Elettronica Politecnico di Bari BariItaly
  2. 2.e.B.I.S. s.r.l. (electronic Business in Security)Spin-Off of Polytechnic of BariValenzano (BA)Italy

Personalised recommendations