Motion Detection Using Spiking Neural Network Model

  • QingXiang Wu
  • T. M. McGinnity
  • Liam Maguire
  • Jianyong Cai
  • G. D. Valderrama-Gonzalez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5227)

Abstract

Inspired by the behaviour of the human visual system, a spiking neural network is proposed to detect moving objects in a visual image sequence. The structure and the properties of the network are detailed in this paper. Simulation results show that the network is able to perform motion detection for dynamic visual image sequence. Boundaries of moving objects are extracted from an active neuron group. Using the boundary, a moving object filter is created to take the moving objects from the grey image. The moving object images can be used to recognise moving objects. The moving tracks can be recorded for further analysis of behaviours of moving objects. It is promising to apply this approach to video processing domain and robotic visual systems.

Keywords

Motion detection spiking neural networks visual system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Masland, R.H.: The Fundamental Plan of the Retina. Nature Neurosci. 4, 877–886 (2001)CrossRefGoogle Scholar
  2. 2.
    Wassle, H.: Parallel Processing in the Mammalian Retina. Nature Rev. Neurosci. 5, 747–757 (2004)CrossRefGoogle Scholar
  3. 3.
    Nelson, R., Kolb, H.: On and off Pathways in the Vertebrate Retina and Visual System. In: Chalupa, L.M., Werner, J.S. (eds.) The Visual Neurosciences, pp. 260–278. MIT Press, Cambridge (2003)Google Scholar
  4. 4.
    Demb, J.B.: Cellular Mechanisms for Direction Selectivity in the Retina. Neuron 55, 179–186 (2007)CrossRefGoogle Scholar
  5. 5.
    Taylor, W.R., Vaney, D.I.: New Directions in Retinal Research. Trends Neurosci. 26, 379–385 (2003)CrossRefGoogle Scholar
  6. 6.
    Kim, I.J., Zhang, Y., Yamagata, M., Meister, M., Sanes, J.R.: Molecular Identification of a Retinal Cell Type that Responds to Upward Motion. Nature 452, 478–482 (2008)CrossRefGoogle Scholar
  7. 7.
    Reppas, J.B., Niyogi, S., Dale, A.M., Sereno, M.I., Tootell, B.H.: Representation of Motion Boundaries in Retinotopic Human Visual Cortical Areas. Nature 388(6638), 175–186 (1997)CrossRefGoogle Scholar
  8. 8.
    Olveczky, B.P., Baccus, S.A., Meister, M.: Segregation of Object and Background Motion in the Retina. Nature 423(6938), 401–408 (2003)CrossRefGoogle Scholar
  9. 9.
    Angelaki, D.E., Shaikh, A.G., Green, A.M., Dickman, J.D.: Neurons Compute Internal Models of the Physical Laws of Motion. Nature 430(6999), 560–565 (2004)CrossRefGoogle Scholar
  10. 10.
    Lin, J.W., Faber, D.S.: Modulation of Synaptic Delay during Synaptic Plasticity. Trends Neurosci. 25(9), 44–55 (2002)CrossRefGoogle Scholar
  11. 11.
    Pena, J.L., Kazuo, S., VSaberi, F.K., Konishi, M.: Cochlear and Neural Delays for Coincidence Detection in Owls. The Journal of Neuroscience 21(23), 9455–9459 (2001)Google Scholar
  12. 12.
    Senn, W., Schneider, M., Ruf, B.: Activity-Dependent Development of Axonal and Dendritic Delays, or, Why Synaptic Transmission Should Be Unreliable. Neural Computation 14, 583–619 (2002)MATHCrossRefGoogle Scholar
  13. 13.
    Carr, C.E., Konishi, M.: Axonal Delay Lines for Time Measurement in the Owl’s Brainstem. Proceedings of the National Academy of Sciences of the United States of America 85(21), 8311–8315 (1988)CrossRefGoogle Scholar
  14. 14.
    Crook, S.M., Ermentrout, G.B., Vanier, M.C., Bower, J.M.: The Role of Axonal Delay in the Synchronization of Networks of Coupled Cortical Oscillators. Journal of Computational Neuroscience 4(2), 157–6873 (1997)CrossRefGoogle Scholar
  15. 15.
    Kandel, E.R., Shwartz, J.H.: Principles of Neural Science. Edward Amold (Publishers) Ltd. (1981)Google Scholar
  16. 16.
    Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, Oxford (1999)Google Scholar
  17. 17.
    Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, Cambridge (2001)MATHGoogle Scholar
  18. 18.
    Gerstner, W., Kistler, W.: Spiking Neuron Models: Single Neurons, pulations, Plasticity. Cambridge University Press, Cambridge (2002)Google Scholar
  19. 19.
    Müller, E.: Simulation of High-Conductance States in Cortical Neural Networks, Masters Thesis, University of Heidelberg, HD-KIP-03-22 (2003)Google Scholar
  20. 20.
    Wu, Q.X., McGinnity, T.M., Maguire, L.P., Glackin, B., Belatreche, A.: Learning Mechanism in Networks of Spiking Neurons. Studies in Computational Intelligence, vol. 35, pp. 171–197. Springer, Heidelberg (2006)Google Scholar
  21. 21.
    Wu, Q.X., McGinnity, T.M., Maguire, L.P., Belatreche, A., Glackin, B.: Adaptive Co-Ordinate Transformation Based on Spike Timing-Dependent Plasticity Learning Paradigm. In: Wang, L., Chen, K.S., Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3610, pp. 420–428. Springer, Heidelberg (2005)Google Scholar
  22. 22.
    Jeffress, L.A.: A Place Theory of Sound Localization. J. Comp. Physiol. Psychol. 41, 35–39 (1948)CrossRefGoogle Scholar
  23. 23.
    Jeffress, L.A.: Binaural Phase Difference and Pitch Variation. Am. J. Psychol. 61, 468–486 (1948)CrossRefGoogle Scholar
  24. 24.
    Jeffress, L.A.: Interaural Phase Difference and Pitch Variation: Day-to-Day Changes. Am. J. Psychol. 62, 1–19 (1949)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • QingXiang Wu
    • 1
    • 2
  • T. M. McGinnity
    • 1
  • Liam Maguire
    • 1
  • Jianyong Cai
    • 2
  • G. D. Valderrama-Gonzalez
    • 1
  1. 1.Intelligent Systems Research CentreUniversity of Ulster at Magee Campus, DerryNorthern Ireland, UK
  2. 2.School of School of Physics and OptoElectronic TechnologyFujian Normal UniversityFuzhouChina

Personalised recommendations