CPBPV: A Constraint-Programming Framework for Bounded Program Verification

  • Hélène Collavizza
  • Michel Rueher
  • Pascal Van Hentenryck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5202)


This paper studies how to verify the conformity of a program with its specification and proposes a novel constraint-programming framework for bounded program verification (CPBPV). The CPBPV framework uses constraint stores to represent the specification and the program and explores execution paths nondeterministically. The input program is partially correct if each constraint store so produced implies the post-condition. CPBPV does not explore spurious execution paths as it incrementally prunes execution paths early by detecting that the constraint store is not consistent. CPBPV uses the rich language of constraint programming to express the constraint store. Finally, CPBPV is parametrized with a list of solvers which are tried in sequence, starting with the least expensive and less general. Experimental results often produce orders of magnitude improvements over earlier approaches, running times being often independent of the variable domains. Moreover, CPBPV was able to detect subtle errors in some programs while other frameworks based on model checking have failed.


Model Check Execution Path Symbolic Execution Constraint Logic Programming Bound Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aït-Kaci, H., Berstel, B., Junker, U., Leconte, M., Podelski, A.: Satisfiability Modulo Structures as Constraint Satisfaction: An Introduction. In: Procs of JFLA 2007 (2007)Google Scholar
  2. 2.
    Armando, A., Benerecetti, M., Montovani, J.: Abstraction Refinement of Linear Programs with Arrays. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 373–388. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Armando, A., Mantovani, J., Platania, L.: Bounded Model Checking of C Programs using a SMT solver instead of a SAT solver. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 146–162. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Botella, B., Gotlieb, A., Michel, C.: Symbolic execution of floating-point computations. Software Testing, Verification and Reliability 16(2), 97–121 (2006)CrossRefGoogle Scholar
  5. 5.
    Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian Abstraction for Model Checking C Programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031. Springer, Heidelberg (2001)Google Scholar
  6. 6.
    Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded Model Checking using Satisfiability Solving. FMSD 19(1), 7–34 (2001)MATHGoogle Scholar
  7. 7.
    Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI-C Programs using SAT. FMSD 25, 105–127 (2004)MATHGoogle Scholar
  9. 9.
    Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 570–574. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadeck, K.: Efficently Computing Static Single Assignment Form and the Control Dependence Graph. Transactions on Programming Languages and Systems 13(4), 451–490 (1991)CrossRefGoogle Scholar
  11. 11.
    Collavizza, H., Rueher, M.: Software Verification using Constraint Programming Techniques. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 182–196. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Collavizza, H., Rueher, M.: Exploring different constraint-based modelings for program verification. In: Procs. of CP 2007. LNCS, vol. 3920, pp. 182–196 (2007)Google Scholar
  13. 13.
    Collavizza H. Rueher M., Van Hentenryck P. : Comparison between CPBPV with ESC/Java, CBMC, Blast, EUREKA and Why, http://www.i3s.unice.fr/~rueher/verificationBench.pdf
  14. 14.
    Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Flanagan, C.: Automatic software model checking via constraint logic. Science of Computer Programming 50(1-3), 253–270 (2004)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Fillitre, J.C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deductive Program Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 173–177. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Gotlieb, A., Botella, B., Rueher, M.: Automatic Test Data Generation using Constraint Solving Techniques. In: Proc. ISSTA 1998; ACM SIGSOFT (2) (1998)Google Scholar
  18. 18.
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast Decision Procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Godefroid, P., Levin, M.Y., Molnar, D.: Automated Whitebox Fuzz Testing. In: NDSS 2008, Network and Distributed System Security Symposium (2008)Google Scholar
  20. 20.
    Jackson, D., Vaziri, M.: Finding Bugs with a Constraint Solver. In: ACM SIGSOFT Symposium on Software Testing and Analysis, pp. 14–15 (2000)Google Scholar
  21. 21.
    Khurshid, S., Pasareanu, C.S., Vissser, W.: Generalized Symbolic Execution for Model Checking and Testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 553–568. Springer, Heidelberg (2003)Google Scholar
  22. 22.
    Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.: Challenges in Satisfiability Modulo Theories. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 2–18. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: AAAI 1994, Seattle, WA, USA, pp. 362–367 (1994)Google Scholar
  24. 24.
    Sy, N.T., Deville, Y.: Automatic Test Data Generation for Programs with Integer and Float Variables. In: Proc of. 16th IEEE ASE 2001 (2001)Google Scholar
  25. 25.
    VanHentenryck, P.: Constraint Satisfaction in Logic Programming. MIT Press, Cambridge (1989)Google Scholar
  26. 26.
    Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: A Modeling Language for Global Optimization. MIT Press, Cambridge (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hélène Collavizza
    • 1
  • Michel Rueher
    • 1
  • Pascal Van Hentenryck
    • 2
  1. 1.Université de Nice–Sophia AntipolisFrance
  2. 2.Brown UniversityProvidence 

Personalised recommendations