A Branch and Bound Algorithm for Numerical MAX-CSP

  • Jean-Marie Normand
  • Alexandre Goldsztejn
  • Marc Christie
  • Frédéric Benhamou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5202)


The Constraint Satisfaction Problem (CSP) framework allows users to define problems in a declarative way, quite independently from the solving process. However, when the problem is over-constrained, the answer “no solution” is generally unsatisfactory. A Max-CSP \(\mathcal{P}_m = \langle V, \textbf{D}, C \rangle\) is a triple defining a constraint problem whose solutions maximise constraint satisfaction. In this paper, we focus on numerical CSPs, which are defined on real variables represented as floating point intervals and which constraints are numerical relations defined in extension. Solving such a problem (i.e., exactly characterizing its solution set) is generally undecidable and thus consists in providing approximations. We propose a branch and bound algorithm that computes under and over approximations of its solution set and determines the maximum number Open image in new window of satisfied constraints. The technique is applied on three numeric applications and provides promising results.


Constraint Satisfaction Problem Facility Location Problem Interval Arithmetic Outer Approximation Interval Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Petit, T., Régin, J.C., Bessière, C.: Range-based algorithm for max-csp. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 280–294. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving max-sat as weighted csp. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 363–376. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Neumaier, A.: Interval Methods for Systems of Equations (1990)Google Scholar
  4. 4.
    Hayes, B.: A Lucid Interval. American Scientist 91(6), 484–488 (2003)Google Scholar
  5. 5.
    Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)zbMATHGoogle Scholar
  6. 6.
    Lhomme, O.: Consistency techniques for numeric csps. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI), pp. 232–238 (1993)Google Scholar
  7. 7.
    Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer and boolean constraints. Journal of Logic Programming 32(1), 1–24 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Benhamou, F., McAllester, D., van Hentenryck, P.: Clp(intervals) revisited. In: ILPS 1994, pp. 124–138. MIT Press, Cambridge (1994)Google Scholar
  9. 9.
    Mackworth, A.K.: Consistency in networks of relations. AI 8(1), 99–118 (1977)zbMATHGoogle Scholar
  10. 10.
    Collavizza, H., Delobel, F., Rueher, M.: Extending Consistent Domains of Numeric CSP. In: Proceedings of IJCAI 1999 (1999)Google Scholar
  11. 11.
    Benhamou, F., Goualard, F., Languenou, E., Christie, M.: Interval Constraint Solving for Camera Control and Motion Planning. ACM Trans. Comput. Logic 5(4), 732–767 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Normand, J.M.: Placement de caméra en environnements virtuels. PhD thesis, Université de Nantes (2008)Google Scholar
  13. 13.
    Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems. AI 58(1-3), 161–205 (1992)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Wallace, R.J.: Analysis of heuristic methods for partial constraint satisfaction problems. In: Principles and Practice of Constraint Programming, pp. 482–496 (1996)Google Scholar
  15. 15.
    Hirsch, M.J., Meneses, C.N., Pardalos, P.M., Resende, M.G.C.: Global optimization by continuous grasp. Optimization Letters 1, 201–212 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jaulin, L., Walter, E.: Guaranteed tuning, with application to robust control and motion planning. Automatica 32(8), 1217–1221 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Dongarra, J.: Performance of various computers using standard linear equations software. Technical Report CS-89-85, University of Tennessee (2007)Google Scholar
  18. 18.
    Christie, M., Normand, J.M., Truchet, C.: Computing inner approximations of numerical maxcsp. In: IntCP 2006 (2006)Google Scholar
  19. 19.
    Delanoue, N., Jaulin, L., Cottenceau, B.: Counting the number of connected components of a set and its application to robotics. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds.) PARA 2004. LNCS, vol. 3732, pp. 93–101. Springer, Heidelberg (2006)Google Scholar
  20. 20.
    Drezner, Z., Hamacher, H. (eds.): Facility Location. Applications and Theory. Springer, New-York (2002)zbMATHGoogle Scholar
  21. 21.
    Jaulin, L., Walter, E.: Guaranteed nonlinear parameter estimation from bounded-error data via interval analysis. Math. Comput. Simul. 35(2), 123–137 (1993)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Milanese, M., Vicino, A.: Estimation theory for nonlinear models and set membership uncertainty. Automatica 27(2), 403–408 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Borning, A., Freeman-Benson, B., Wilson, M.: Constraint hierarchies. Lisp Symb. Comput. 5(3), 223–270 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jean-Marie Normand
    • 1
  • Alexandre Goldsztejn
    • 1
    • 2
  • Marc Christie
    • 1
    • 3
  • Frédéric Benhamou
    • 1
  1. 1.University of Nantes, LINA UMR CNRS 6241 
  2. 2.CNRSFrance
  3. 3.INRIA Rennes Bretagne-Atlantique 

Personalised recommendations