A New Framework for Sharp and Efficient Resolution of NCSP with Manifolds of Solutions

  • Alexandre Goldsztejn
  • Laurent Granvilliers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5202)

Abstract

When numerical CSPs are used to solve systems of n equations with n variables, the interval Newton operator plays a key role: It acts like a global constraint, hence achieving a powerful contraction, and proves rigorously the existence of solutions. However, both advantages cannot be used for under-constrained systems of equations, which have manifolds of solutions. A new framework is proposed in this paper to extend the advantages of the interval Newton to under-constrained systems of equations. This is done simply by permitting domains of CSPs to be parallelepipeds instead of the usual boxes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tupper, J.: Reliable two-dimensional graphing methods for mathematical formulae with two free variables. In: SIGGRAPH 2001, pp. 77–86. ACM, New York (2001)CrossRefGoogle Scholar
  2. 2.
    Kearfott, R.B., Xing, Z.: An Interval Step Control for Continuation Methods. SIAM J. Numer. Anal. 31(3), 892–914 (1994)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Hansen, E.: Global Optimization Using Interval Analysis, 2nd edn. Marcel Dekker, NY (1992)MATHGoogle Scholar
  4. 4.
    Merlet, J.: Parallel robots. Kluwer, Dordrecht (2000)MATHGoogle Scholar
  5. 5.
    Van Hentenryck, P., McAllester, D., Kapur, D.: Solving polynomial systems using a branch and prune approach. SIAM J. Numer. Anal. 34(2), 797–827 (1997)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Granvilliers, L., Benhamou, F.: RealPaver: An Interval Solver using Constraint Satisfaction Techniques. ACM Trans. Math. Soft. 32(1), 138–156 (2006)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Neumaier, A.: Interval Methods for Systems of Equations. Cambridge U. P, Cambridge (1990)Google Scholar
  8. 8.
    Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated Solutions of Initial Value Problems for Ordinary Differential Equations. Applied Mathematics and Computation 105(1), 21–68 (1999)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Neumaier, A.: Overestimation in linear interval equations. SIAM J. Numer. Anal. 24(1), 207–214 (1987)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Goldsztejn, A.: A Right-Preconditioning Process for the Formal-Algebraic Approach to Inner and Outer Estimation of AE-solution Sets. Reliab. Comp. 11(6), 443–478 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Goldsztejn, A., Hayes, W.: Reliable Inner Approximation of the Solution Set to Initial Value Problems with Uncertain Initial Value. In: Proc. of SCAN 2006 (2006)Google Scholar
  12. 12.
    Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)MATHGoogle Scholar
  13. 13.
    Benhamou, F., Older, W.: Applying Interval Arithmetic to Real, Integer and Boolean Constraints. Journal of Logic Programming 32(1), 1–24 (1997)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Benhamou, F., McAllister, D., Hentenryck, P.V.: CLP(Intervals) Revisited. In: International Symposium on Logic Programming, pp. 124–138 (1994)Google Scholar
  15. 15.
    Collavizza, H., Delobel, F., Rueher, M.: Comparing Partial Consistencies. Reliab. Comp. 1, 1–16 (1999)Google Scholar
  16. 16.
    Goldsztejn, A.: A Branch and Prune Algorithm for the Approximation of Non-Linear AE-Solution Sets. In: Proc. of ACM SAC 2006, pp. 1650–1654 (2006)Google Scholar
  17. 17.
    Moré, J., Garbow, B., Hillstrom, K.: Testing unconstrained optimization software. ACM Trans. Math. Software 7(1), 136–140 (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alexandre Goldsztejn
    • 1
  • Laurent Granvilliers
    • 2
  1. 1.CNRS, LINA, UMR 6241 
  2. 2.Université de Nantes, Nantes Atlantique Université, CNRS, LINA, UMR 6241 

Personalised recommendations