Visualizing Real-Time Network Resource Usage

  • Ryan Blue
  • Cody Dunne
  • Adam Fuchs
  • Kyle King
  • Aaron Schulman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5210)

Abstract

We present NetGrok, a tool for visualizing computer network usage in real-time. NetGrok combines well-known information visualization techniques—overview, zoom & filter, details on demand—with network graph and treemap visualizations. NetGrok integrates these tools with a shared data store that can read PCAP-formatted network traces, capture traces from a live interface, and filter the data set dynamically by bandwidth, number of connections, and time. We performed an expert user case study that demonstrates the benefits of applying these techniques to static and real-time streaming packet data. Our user study shows NetGrok serves as an “excellent real-time diagnostic,” enabling fast understanding of network resource usage and rapid anomaly detection.

Keywords

Real-Time Network Administration Force-Directed Treemap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball, R., Fink, G.A., North, C.: Home-centric visualization of network traffic for security administration. In: VizSEC/DMSEC 2004: Proceedings of the 2004 ACM workshop on Visualization and data mining for computer security, pp. 55–64. ACM, New York (2004)CrossRefGoogle Scholar
  2. 2.
    Bruls, M., Huizing, K., van Wijk, J.: Squarified treemaps. In: Proc. of Joint Eurographics and IEEE TCVG Symp. on Visualization (TCVG 2000), pp. 33–42. IEEE Press, Los Alamitos (2000)Google Scholar
  3. 3.
    Chandra, R., Mahajan, R., Padmanabhan, V., Zhang, M.: CRAWDAD data set microsoft/osdi2006 (v. 2007-05-23) (May 2007), http://crawdad.cs.dartmouth.edu/microsoft/osdi2006
  4. 4.
    Cheswick, B., Burch, H., Branigan, S.: Mapping and visualizing the internet. In: ATEC 2000: Proceedings of the annual conference on USENIX Annual Technical Conference, San Diego, California, p. 1. USENIX Association (2000)Google Scholar
  5. 5.
    Fekete, J.-D., Wang, D., Dang, N., Aris, A., Plaisant, C.: Overlaying graph links on treemaps. In: Information Visualization Symposium Poster Compendium, pp. 82–83. IEEE, Los Alamitos (2003)Google Scholar
  6. 6.
    Fink, G., North, C.: Root polar layout of internet address data for security administration. In: IEEE Workshop on Visualization for Computer Security, 2005 (VizSEC 2005), 26 October 2005, pp. 55–64 (2005)Google Scholar
  7. 7.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Software - Practice and Experience 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  8. 8.
    Girardin, L.: An eye on network intruder-administrator shootouts. In: Proceedings of the Workshop on Intrusion Detection and Network Monitoring (ID 1999), Berkeley, CA, USA, pp. 19–28. USENIX Association (1999)Google Scholar
  9. 9.
    Girardin, L., Brodbeck, D.: A visual approach for monitoring logs. In: LISA 1998: Proceedings of the 12th USENIX conference on System administration, Berkeley, CA, USA, pp. 299–308. USENIX Association (1998)Google Scholar
  10. 10.
    Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for interactive information visualization. In: CHI 2005: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 421–430. ACM, New York (2005)CrossRefGoogle Scholar
  11. 11.
    Herman, I., Melancon, G., Marshall, M.S.: Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics 06(1), 24–43 (2000)CrossRefGoogle Scholar
  12. 12.
    Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A blueprint for introducing disruptive technology into the internet. SIGCOMM Comput. Commun. Rev. 33(1), 59–64 (2003)CrossRefGoogle Scholar
  13. 13.
    Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans. Graph. 11(1), 92–99 (1992)MATHCrossRefGoogle Scholar
  14. 14.
    Shneiderman, B., Aris, A.: Network visualization by semantic substrates. IEEE Transactions on Visualization and Computer Graphics 12(5), 733–740 (2006)CrossRefGoogle Scholar
  15. 15.
    Teoh, S.T., Ma, K.-L., Wu, S.: A visual exploration process for the analysis of internet routing data. In: Visualization, 2003. VIS 2003, 24-24 October 2003, pp. 523–530. IEEE, Los Alamitos (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ryan Blue
    • 1
  • Cody Dunne
    • 1
  • Adam Fuchs
    • 1
  • Kyle King
    • 1
  • Aaron Schulman
    • 1
  1. 1.Department of Computer ScienceUniversity of MarylandCollege Park

Personalised recommendations