Multivariate Polynomials Estimation Based on GradientBoost in Multimodal Biometrics

  • Mehdi Parviz
  • M. Shahram Moin
Part of the Communications in Computer and Information Science book series (CCIS, volume 15)


One of the traditional criteria to estimate the value of coefficients of multivariate polynomials in regression applications is MSE, which is known as OWM in classifier combination literature. In this paper, we address the use of GradientBoost algorithm to estimate coefficients of multivariate polynomials for score fusion level in multimodal biometric systems. Our experiments on NIST-bssr1 score database showed an improvement in verification accuracy and also reduction of number of coefficients, which increased the memory efficiency. In addition, we examined combination of OWM, and GradientBoost which showed better ROC performance and lower model order compared to OWM alone.


Multimodal Biometrics Multivariate Polynomials GradientBoost Classifiers Fusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nandakumar, K., Chen, Y., Dass, S.C., Jain, A.K.: Likelihood Ratio-Based Biometric Score Fusion. IEEE Trans. Pattern Anal. Machine Intelligence 30(2), 342–347 (2008)CrossRefGoogle Scholar
  2. 2.
    Fierrez-Aguilar, J.: Adapted Fusion Schemes for Multimodal Biometric Authentication. Phd Thesis, Universidad Politecnica de Madrid (2006)Google Scholar
  3. 3.
    Toh, K.-A., Yau, W.-Y., Jiang, X.: A Reduced Multivariate Polynomial Model for Multimodal Biometrics and Classifiers Fusion. IEEE Trans. Circuits Systems Video Technol. 14(2), 224–233 (2004)CrossRefGoogle Scholar
  4. 4.
    Toh, K.-A., Yau, W.-Y.: Combination of Hyperbolic Functions for Multimodal Biometrics Data Fusion. IEEE Trans. Systems Man Cybernetics, Part B 34(2), 1196–1209 (2004)CrossRefGoogle Scholar
  5. 5.
    Seber, G.A.F., Wild, C.J.: Nonlinear Regression, Erewhon, NC. John Wiley and Sons, New York (1989)MATHGoogle Scholar
  6. 6.
    Collins, M., Schapire, R.E., Singer, Y.: Logistic Regression, AdaBoost and Bregman Distances. In: COLT, pp. 158–169 (2000)Google Scholar
  7. 7.
    Ueda, N.: Optimal linear combination of neural networks for improving classification performance. IEEE Trans. Pattern Anal. Machine Intelligence 22, 207–215 (2000)CrossRefGoogle Scholar
  8. 8.
    Friedman, J.H.: Greedy Function Approximation: a GradientBoost Machine. Technical report, Department of Statistics, Stanford University (1999)Google Scholar
  9. 9.
    Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting. J. Comput. System Sci. 55(1), 119–139 (1997)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    National Institute of Standards and Technology. NIST Biometric Scores Set - release 1 (2004),

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mehdi Parviz
    • 1
  • M. Shahram Moin
    • 1
  1. 1.Multimedia Research Group, IT FacultyIran Telecommunication Research CenterTehranIran

Personalised recommendations